Текущий выпуск Выпуск 4, 2020 Том 30

Управление движением кругового цилиндра в идеальной жидкости с помощью источника

 pdf (357K)

Рассмотрено движение кругового цилиндра в идеальной жидкости в поле неподвижного источника. Показано, что при постоянной интенсивности источника система обладает интегралом момента и интегралом энергии. Указаны условия, при которых уравнения движения, редуцированные на уровень интеграла момента, допускают неустойчивую неподвижную точку. Данная неподвижная точка соответствует круговому движению цилиндра вокруг источника. Построена обратная связь, обеспечивающая стабилизацию указанной неподвижной точки за счет изменения интенсивности источника.

Ключевые слова: управление, идеальная жидкость, обратная связь, движение в присутствии источника
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2020, т. 30, вып. 4, с. 604-617
DOI: 10.35634/vm200405

Control of the motion of a circular cylinder in an ideal fluid using a source

The motion of a circular cylinder in an ideal fluid in the field of a fixed source is considered. It is shown that, when the source has constant strength, the system possesses a momentum integral and an energy integral. Conditions are found under which the equations of motion reduced to the level set of the momentum integral admit an unstable fixed point. This fixed point corresponds to circular motion of the cylinder about the source. A feedback is constructed which ensures stabilization of the above-mentioned fixed point by changing the strength of the source.

Keywords: control, ideal fluid, feedback, motion in the presence of a source
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2020, vol. 30, issue 4, pp. 604-617

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref