Текущий выпуск Выпуск 1, 2021 Том 31

Численно-аналитический метод решения краевой задачи для обобщенных уравнений влагопереноса

 pdf (248K)

Работа посвящена рассмотрению качественно новых уравнений влагопереноса, которые являются обобщением уравнения Аллера и уравнения Аллера-Лыкова. Данное обобщение дает возможность отражения в характере исходных уравнений специфических особенностей изучаемых массивов, их структуры, физических свойств, протекающих в них процессов посредством введения понятия фрактальной скорости изменения влажности. Для этих уравнений с дробной по времени производной Римана-Лиувилля с краевыми условиями первого рода получены решения системы разностных уравнений с постоянными коэффициентами, возникающих при использовании метода прямых. Получены априорные оценки, из которых следует сходимость решений систем обыкновенных дифференциальных уравнений с переменными коэффициентами дробного порядка. На тестовых примерах проведены численные эксперименты, подтверждающие теоретические результаты, полученные в работе.

Ключевые слова: обобщенное уравнение влагопереноса Аллера, уравнение Аллера-Лыкова, производная дробного порядка, метод прямых, априорная оценка
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2021, т. 31, вып. 1, с. 19-34
DOI: 10.35634/vm210102

Numerical-analytical method for solving boundary value problem for the generalized moisture transport equation

The paper studies qualitatively new equations of moisture transfer, which generalize the Aller and Aller-Lykov equations. The generalization contributes to revealing in the original equations the specific features of the studied massifs, their structure, physical properties, processes occurring in them through the introduction of the notion of the rates of change of the fractal dimension. We have obtained solutions to the constant coefficient difference equations as a system arising when using the method of lines for the equations with a Riemann-Liouville time fractional derivative with boundary conditions of the first kind. A priori estimates are obtained that imply convergence of the obtained solutions to systems of ordinary differential equations with variable fractional coefficients. Numerical tests have been carried out to confirm theoretical results of the study.

Keywords: generalized Aller moisture transfer equation, Aller-Lykov equation, fractional order derivative, method of lines, a priori estimate
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2021, vol. 31, issue 1, pp. 19-34

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref