Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Об оптимизации гарантии в задаче управления с конечным множеством помех
В статье изучается задача управления в условиях помех, которая формулируется как задача оптимизации гарантированного результата. В отличие от классической постановки таких задач предполагается, что множество допустимых помех конечно и состоит из кусочно-непрерывных функций. С учетом этого дополнительного функционального ограничения на помеху определяется подходящий класс неупреждающих стратегий (квазистратегий) управления и рассматривается соответствующая величина оптимального гарантированного результата. При некотором техническом предположении о свойстве различимости допустимых помех доказывается, что этот результат может быть достигнут путем использования стратегий управления с полной памятью. Как следствие, устанавливается неулучшаемость класса стратегий с полной памятью. Ключевым элементом доказательства является процедура распознавания действующих в системе помех, которая позволяет всякой неупреждающей стратегии поставить в соответствие близкую по гарантированному результату стратегию с полной памятью. В заключение статьи приводится иллюстрирующий пример.
On guarantee optimization in control problem with finite set of disturbances
In this paper, we deal with a control problem under conditions of disturbances, which is stated as a problem of optimization of the guaranteed result. Compared to the classical formulation of such problems, we assume that the set of admissible disturbances is finite and consists of piecewise continuous functions. In connection with this additional functional constraint on the disturbance, we introduce an appropriate class of non-anticipative control strategies and consider the corresponding value of the optimal guaranteed result. Under a technical assumption concerning a property of distinguishability of the admissible disturbances, we prove that this result can be achieved by using control strategies with full memory. As a consequence, we establish unimprovability of the class of full-memory strategies. A key element of the proof is a procedure of recovering the disturbance acting in the system, which allows us to associate every non-anticipative strategy with a full-memory strategy providing a close guaranteed result. The paper concludes with an illustrative example.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.