Текущий выпуск Выпуск 4, 2024 Том 34

О движении динамически симметричного спутника в одном случае кратного параметрического резонанса

 pdf (264K)

Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.

Ключевые слова: кратный параметрический резонанс, нормализация, нелинейные колебания, устойчивость, периодические движения, теория КАМ, спутник, цилиндрическая прецессия
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2024, т. 34, вып. 4, с. 594-612
DOI: 10.35634/vm240408

On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance

The paper studies the motions of a dynamically symmetric satellite (rigid body) relative to the center of mass in the central Newtonian gravitational field on a weakly elliptical orbit in the neighborhood of its stationary rotation (cylindrical precession). We consider the values of the parameters for which, in the limiting case of a circular orbit, one of the frequencies of small linear oscillations is equal to unity and the other is equal to zero, and the rank of the coefficient matrix of the linearized equations of the perturbed motion is equal to two, as well as a small neighborhood of this resonant point in the three-dimensional space of parameters. The resonant periodic motions of the satellite, analytical in fractional powers of a small parameter (the eccentricity of the orbit of the satellite's center of mass), are constructed. A rigorous nonlinear analysis of their stability is carried out. The methods of KAM theory are used to describe two- and three-frequency conditionally periodic motions of a satellite, with frequencies of different orders in a small parameter. A number of general theoretical issues concerning the considered multiple parametric resonance in Hamiltonian systems with two degrees of freedom that are close to autonomous and periodic in time are discussed. Several qualitatively different variants of parametric resonance regions are constructed. It is shown that in the general case the nature of nonlinear resonant oscillations of the system is determined by the first approximation system in a small parameter.

Keywords: multiple parametric resonance, normalization, nonlinear oscillations, stability, periodic motions, KAM theory, satellite, cylindrical precession
Citation in English: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, vol. 34, issue 4, pp. 594-612

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref