Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Назначение произвольных матричных коэффициентов для блочных матричных билинейных систем управления в форме Фробениуса

Работа относится к классической задаче назначения спектра собственных значений. Мы рассматриваем эту задачу в обобщенной постановке. Коэффициенты системы являются блочными матрицами. Требуется построить регулятор, который назначает замкнутой системе заданные блочные матричные коэффициенты характеристического матричного полинома. Для блочных матричных билинейных систем управления получены достаточные условия разрешимости задачи назначения произвольных матричных коэффициентов характеристического матричного полинома, когда коэффициенты системы имеют специальный вид, а именно, матрица состояния является нижней блочной матрицей Фробениуса, а матричные коэффициенты при регуляторе содержат некоторые нулевые блоки. Доказано, что основной результат обобщает соответствующую теорему для блочной матричной линейной системы управления, замкнутой линейной статической обратной связью по выходу. Показано, что достаточные условия не являются необходимыми. Рассмотрены частные случаи. Приведены примеры, иллюстрирующие полученные результаты.
Arbitrary matrix coefficient assignment for block matrix bilinear control systems in the Frobenius form
The paper relates to the classical problem of eigenvalue spectrum assignment. We consider this problem in a generalized formulation. The system coefficients are block matrices. It is required to construct a controller that assigns the given block matrix coefficients of the characteristic matrix polynomial to the closed-loop system. For block matrix bilinear control systems, we obtain sufficient conditions for resolving the problem of arbitrary matrix coefficient assignment for the characteristic matrix polynomial when the coefficients of the system have a special form, namely, the state matrix is a lower block Frobenius matrix, and the matrix coefficients at the controller contain some zero blocks. It is proved that, the main result generalizes the corresponding theorem for block matrix linear control system closed-loop by linear static output feedback. It is shown that sufficient conditions are not necessary. Special cases are considered. Examples are presented to illustrate the results.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.