Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается стационарная управляемая система в конечномерном эвклидовом пространстве и на конечном промежутке времени. Изучается задача о сближении управляемой системы с компактным целевым множеством на заданном промежутке времени. Один из подходов к решению рассматриваемой задачи о сближении основан на выделении в пространстве позиций множества разрешимости, т.е. множества всех позиций системы, из которых, как из начальных, разрешима задача о сближении. Конструирование множества разрешимости - самостоятельная сложная и трудоемкая задача, которую удается точно решить лишь в редких случаях. В настоящей работе рассматриваются вопросы приближенного конструирования множества разрешимости в задаче о сближении нелинейной стационарной управляемой системы. Эта задача, как известно, тесно сопряжена с задачей конструирования интегральных воронок и трубок траекторий управляемых систем. Интегральные воронки управляемых систем можно приближенно конструировать по (временным) шагам как наборы соответствующих множеств достижимости, поэтому одним из основных элементов разрешающей конструкции в настоящей работе являются множества достижимости. В работе предлагается схема приближенного вычисления множества разрешимости задачи о сближении управляемой стационарной системы на конечном промежутке времени. В основе этой схемы лежит сведение к приближенному вычислению множеств разрешимости конечного числа более простых задач - задач о сближении с целевым множеством в фиксированные моменты времени из заданного временного промежутка. При этом моменты времени должны выбираться достаточно плотно в упомянутом промежутке времени. В работе проведено математическое моделирование задачи о сближении механической системы «Трансляционный осциллятор с ротационным актуатором». Представлено графическое сопровождение решения задачи.
-
Рассматривается стационарная управляемая система в евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из центральных в теории управления задач задача о сближении управляемой системы с множеством в фазовом пространстве системы в фиксированный (конечный) момент времени. Эта задача тесно связана с многими ключевыми задачами теории управления, например, с задачей об оптимальном быстродействии. В связи с этим представляется важным иметь эффективные алгоритмы построения решений этой задачи. Из-за сложности задачи невозможно аналитическое описание решений даже в относительно простых случаях. Построение приближенных решений задачи связано с конструированием интегральной воронки управляемой системы, но обращенной во времени. В работе приводится один алгоритм приближенного построения интегральной воронки, представляющей собой конечную аппроксимацию множества разрешимости задачи о сближении. В работе также описана процедура приближенного вычисления разрешающего управления, которая включает в себя запоминание локальных управлений. Приводится иллюстрирующий пример механической управляемой системы.
-
Доказываются достаточные условия поточечной управляемости по нелинейному функционалу для нелинейных распределенных систем, допускающих представление в виде вольтеррова функционально-операторного уравнения в лебеговом пространстве, на заданном множестве D конечномерных аппроксимаций управления. Определяется множество глобальной разрешимости Ω как множество всех управлений из D, для каждого из которых уравнение имеет единственное глобальное решение. В качестве вспомогательного результата, представляющего самостоятельный интерес, доказывается, что при сделанных предположениях выполняется равенство Ω = D. Сведение управляемых распределенных систем к изучаемому функционально-операторному уравнению иллюстрируется на двух примерах: первой краевой задачи для параболического уравнения второго порядка и смешанной задачи для гиперболического уравнения второго порядка; и то, и другое уравнение достаточно общего вида.
-
Пусть $X$ — гильбертово пространство, $U$ — банахово пространство, $G\colon X\to X$ — линейный оператор такой, что оператор $B_\lambda=\lambda I-G$ является максимальным монотонным при некотором (произвольно заданном) $\lambda\in\mathbb{R}$. Для задачи Коши, связанной с управляемым полулинейным эволюционным уравнением вида \[x^\prime(t)=Gx(t)+f\bigl( t,x(t),u(t)\bigr),\quad t\in[0;T];\quad x(0)=x_0\in X,\] где $u=u(t)\colon[0;T]\to U$ — управление, $x(t)$ — неизвестная функция со значениями в $X$, доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости задачи Коши для некоторого обыкновенного дифференциального уравнения в пространстве $\mathbb{R}$. Решение $x$ понимается в слабом смысле и ищется в пространстве $\mathbb{C}_w\bigl([0;T];X\bigr)$ слабо непрерывных функций. Фактически, обобщается аналогичный результат, доказанный автором ранее для случая ограниченного оператора $G$. Суть указанного обобщения заключается в том, что постулируемые свойства оператора $B_\lambda$ позволяют построить для него аппроксимации Иосиды линейными ограниченными операторами, распространив необходимые нам оценки с «ограниченного» на «неограниченный» случай. В качестве примеров рассматриваются начально-краевые задачи для уравнения теплопроводности и волнового уравнения.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.