Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Хаотическое рассеяние точечного вихря круговым цилиндрическим твердым телом, движущимся в поле тяжести, с. 184-196В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.
-
В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.
-
Рассматривается задача о скольжении однородного прямого цилиндра произвольной формы (шайбы) по горизонтальной плоскости под действием сил сухого трения. Пятно контакта цилиндра с плоскостью совпадает с его основанием. Одной из центральных гипотез в работе является выбор математической модели взаимодействия малого элемента поверхности шайбы с плоскостью. Предполагается, что данное явление описывается законом сухого трения Амонтона–Кулона. В данной работе основное внимание уделено качественному анализу уравнений движения системы, который позволит описать динамику при малых значениях кинетической энергии системы (финальную динамику). Сформулированы и доказаны качественные свойства динамики произвольных шайб. Приведены примеры, показывающие различие финальной динамики шайб, опирающихся на шероховатую плоскость круглым основанием, центрально-симметричным и произвольной формы.
-
При движении тяжелой частицы в вязкой среде сила сопротивления, вообще говоря, зависит от числа Рейнольдса, следовательно, от модуля вектора скорости частицы относительно среды. Это приводит к нелинейному взаимодействию разных составляющих движения. Если оседающая в поле силы тяжести частица имеет и горизонтальную составляющую скорости, то эти две компоненты движения, влияя на число Рейнольдса, вносят вклад в коэффициент гидродинамического сопротивления и тем самым воздействуют друг на друга. Это может иметь значение, например, в приводном слое атмосферы при сильных ветрах, когда, вследствие упомянутого взаимодействия, время пребывания брызг в воздухе зависит, вообще говоря, и от их горизонтального движения. Для конкретного закона сопротивления исследована нелинейная модель взаимодействия двух составляющих движения. Расчеты показывают, что, хотя порядок величины скорости оседания частицы при учете этого взаимодействия не меняется, поправки к скорости могут быть заметными.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.