Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'вращательное движение':
Найдено статей: 3
  1. Исследуется эволюция угла наклона оси вращения планеты в поле притяжения звезды и внешних планет, входящих в планетную систему. Считаем, что исследуемая планета является динамически-симметричным твердым телом $(A = B)$. Полагаем также, что сама планета и внешние планеты движутся по кеплеровским эллипсам вокруг звезды со средними движениями $\omega$ и $\omega_2,\ldots ,\omega_N$, где $N$ - число небесных тел, воздействующих на планету. В переменных Депри-Андуайе получена функция Гамильтона задачи в рамках спутникова приближения. Проведено осреднение функции Гамильтона по быстрым переменным вращательного и орбитального движений при условии отсутствия резонансов между быстрыми частотами указанных движений. Показано, что осредненная функция Гамильтона содержит, помимо классических параметров, параметры $D_i$, являющиеся функционалами на семействе орбит исследуемой планеты и внешних планет. Показано, что осредненная функция Гамильтона допускает разделение переменных и, как следствие, существует три первых интеграла в инволюции. При рассмотрении гравитационных моментов от внешних планет как малых возмущений, получены, с помощью интеграла энергии осредненных уравнений, явные приближенные формулы для угла нутации исследуемой планеты. Получены также приближенные формулы для возмущенного периода прецессии планеты. Проведены расчеты размаха колебаний по углу нутации планеты, возмущенного периода ее прецессии для частного случая планетной системы, состоящей из звезды, самой планеты и массивной внешней планеты (подобной Юпитеру) с симметрично расположенными орбитами, плоскости которых пересекаются под углом $\gamma$.

  2. Рассматривается твердое тело-гиростат, движущееся по круговой кеплеровой околоземной орбите в плоскости геомагнитного экватора. Предполагается, что тело снабжено маховиком, обладает электростатическим зарядом и собственным магнитным моментом. Изучается вращательное движение гиростата относительно его центра масс под действием лоренцева и магнитного моментов. Показано, что при определенных предположениях о наличии некоторой динамической и электромагнитной симметрии гиростата решение задачи сводится к квадратурам путем построения четырех первых интегралов. Проведено исследование движения оси симметрии гиростата и дана его геометрическая интерпретация.

  3. Основной целью данной работы является построение новых высокоточных рядов вращения абсолютно твердой Земли, которые являются динамически согласованными с эфемеридой DE406/LE406. Динамика вращательного движения абсолютно твердой Земли изучается численно с помощью параметров Родрига-Гамильтона на 2000-летнем и 6000-летнем интервалах времени. Все вычисления в данном исследовании производятся с четверной точностью. Орбитальное движение возмущающих небесных тел определяется эфемеридой DE406/LE406. Результаты численного решения рассматриваемой проблемы сравниваются с полуаналитическими решениями задачи о вращении абсолютно твердой Земли SMART97 и S9000 соответственно относительно неподвижной эклиптики эпохи J2000. Начальные условия для численного интегрирования берутся из соответствующих полуаналитических решений. Исследование невязок сравнения между высокоточными численными решениями задачи о вращении абсолютно твердой Земли и полуаналитическими решениями этой задачи  производятся методами наименьших квадратов и спектрального анализа. Задача решалась с учетом наиболее существенных из релятивистских возмущений во вращательном движении Земли - геодезических возмущений. В результате построены новые долгосрочные решения вращения абсолютно твeрдой Земли RERS2012 (Rigid Earth Rotation Series 2012), динамически согласованные с эфемеридой DE406/LE406 на 2000-летнем и 6000-летнем интервалах времени.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref