Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'газовая динамика':
Найдено статей: 5
  1. Проведено численное исследование процесса формирования сферического ударного импульса в газе и его взаимодействие с защитным барьером из водной пены, сопровождающееся образованием вихревых течений. Поставленная задача решена для случая двумерной осевой симметрии с использованием двухфазной газожидкостной модели, базирующейся на законах сохранения массы, импульса и энергии смеси и уравнении динамики объемного содержания фаз. Численное решение реализовано на базе открытого пакета OpenFOAM с применением стандартного решателя compressibleMultiphaseInterFoam, модифицированного в соответствии с условиями задачи и модельными представлениями. Дискретизация системы уравнений в выбранном солвере проведена методом контрольных объемов с применением вычислительного алгоритма Pimple. Показано значительное снижение интенсивности ударной волны при ее взаимодействии с преградой из водной пены и выявлены причины, приводящие к вихреобразованию в газовой области. Оценена достоверность полученных результатов сравнением с решением аналогичной задачи другими численными методами.

  2. В работе представлены результаты расчетного исследования локальной структуры восходящего газожидкостного потока в вертикальной трубе. Математическая модель основана на использовании двухжидкостного эйлерова подхода с учетом обратного влияния пузырьков на осредненные характеристики и турбулентность несущей фазы. Турбулентная кинетическая энергия жидкости рассчитывается с применением двухпараметрической изотропной модели турбулентности $k - \varepsilon$, модифицированной для двухфазных сред. Для описания динамики распределения пузырьков по размерам используются уравнения сохранения количества частиц для отдельных групп пузырьков с различными диаметрами для каждой фракции с учетом процессов дробления и коалесценции. Численно исследовано влияние изменения степени дисперсности газовой фазы, объемного расходного газосодержания, скорости дисперсной фазы на локальную структуру и поверхностное трение в двухфазном потоке. Сравнение результатов моделирования с экспериментальными данными показало, что разработанный подход позволяет адекватно описывать турбулентные газожидкостные течения в широком диапазоне изменения газосодержания и начальных размеров пузырьков.

  3. В работе построен алгоритм повышенного порядка точности на основе WENO схем для моделирования динамики многокомпонентного реагирующего газа с учетом процессов диффузии, теплопроводности и химических реакций. Проведены расчеты для течения газа в проточном реакторе для термического пиролиза этана с внешним обогревом реакционной зоны. В рассматриваемых течениях скорость движения газа много меньше скорости распространения звука в газовой смеси, что обуславливает использование уравнений Навье-Стокса в приближении малых чисел Маха для описания исследуемых процессов. Расчет уравнений химических реакций выделяется в отдельный шаг, где скорость реакции определяется на основе выражений Аррениуса. Для построения модели химической кинетики принята кинетическая схема пиролиза этана, представляющая собой разветвленный радикальный механизм. Проведены расчеты дозвукового течения газа с учетом процессов диффузии, химических реакций и их тепловых эффектов для различных температур нагревательных элементов. Сравнение с экспериментальными данными показало, что $1.97\,\%$-ная конверсия этана в расчетах достигается для $648\,^{\circ}$C на выходе металлического реактора, что близко к экспериментальным значениям, составляющим $2.1\,\%$. Сравнение данных экспериментов по термическому пиролизу этана с данными, полученными в ходе вычислительного эксперимента, показало высокую степень достоверности полученных результатов.

  4. Приводится вычислительный алгоритм высокого порядка точности для решения задач аэродинамики и газовой динамики. Метод прямого численного моделирования основан на применении современных схем WENO при аппроксимации по пространству конвективных слагаемых и первых производных системы полных уравнений Навье-Стокса. Вторые производные и диффузионные члены уравнений разрешаются с помощью центрально-разностной схемы высокого порядка точности. Результаты моделирования с использованием метода демонстрируются на примере решения двух задач. Показывается, что вычислительные алгоритмы адекватно воспроизводят физические эффекты, свойственные как дозвуковым течениям (вихревые дорожки), так и сверхзвуковым потокам (разрывы параметров, ударные волны, скачки уплотнения).

  5. Рассматриваются постановка и алгоритм решения сопряженной задачи взаимодействия сверхзвукового потока и деформируемой панели. Течение газа описывается системой уравнений сохранения в приближении совершенного газа. Численное интегрирование выполняется на основе метода конечных объемов. Для вычисления конвективных потоков применялась монотонизированная схема, обеспечивающая второй порядок аппроксимации по пространству в областях гладкости. Задача динамики деформирования панели аппроксимировалась по пространству методом конечных элементов, а по времени  по схеме Ньюмарка. При решении задач использовались несогласованные неструктурированные сетки, отвечающие разным схемам дискретизации и требованиям аппроксимации. Условия сопряжения на границе раздела удовлетворялись при помощи алгоритма двустороннего слабого связывания. Численные результаты сопоставляются с известными экспериментальными данными. Проводится анализ различных факторов, влияющих на картину течения и форму колебаний пластины.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref