Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'гильбертово пространство':
Найдено статей: 11
  1. Бадриев И.Б., Исмагилов И.Н., Исмагилов Л.Н.
    Метод решения нелинейных стационарных анизотропных задач фильтрации, с. 3-11

    Работа посвящена методу решения стационарных задач фильтрации несжимаемой жидкости, следующей нелинейному анизотропному многозначному закону фильтрации с предельным градиентом. Задача фильтрации сформулирована в виде вариационного неравенства второго рода с обратно сильно монотонным оператором в гильбертовом пространстве. Функционал, входящий в это вариационное неравенство, является суммой нескольких полунепрерывных снизу выпуклых собственных функционалов. Для решения вариационного неравенства предлагается использовать итерационный метод расщепления.

  2. Рассматриваются структурные, аппроксимативные и спектральные свойства нётеровых операторов индекса n и (−n), действующих между банаховыми пространствами B и D, где D изоморфно прямой сумме пространства B и конечномерного пространства E размерности n. Раскрыта роль теоремы С.М. Никольского о фредгольмовом операторе в изучении указанных свойств, а также в вопросе разрешимости уравнений с краевыми неравенствами. В случае сепарабельного гильбертова пространства B для однозначно разрешимых краевых задач предлагается основанная на разложении Э. Шмидта компактного оператора схема дискретизации, которая позволяет применить абстрактный вариант теоремы Рябенького–Филиппова о связи аппроксимации, устойчивости и сходимости.

  3. В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.

    В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.

  4. Изучается задача о малых движениях идеальной стратифицированной жидкости со свободной поверхностью, частично покрытой упругим льдом. Упругий лед моделируется упругой пластиной. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Начальная краевая задача сведена к задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. После подробного изучения свойств операторных коэффициентов, отвечающих возникшей системе уравнений, доказывается теорема о сильной разрешимости полученной задачи Коши на конечном интервале времени. На этой основе доказана также теорема о существовании решения и исходной начально-краевой задачи.

  5. Рассматривается регуляризация принципа Лагранжа (ПЛ) в выпуклой задаче условной оптимизации с операторным ограничением-равенством в гильбертовом пространстве и конечным числом функциональных ограничений-неравенств. Целевой функционал задачи не является, вообще говоря, сильно выпуклым, а на множество ее допустимых элементов, которое также принадлежит гильбертову пространству, не накладывается условие ограниченности. Получение регуляризованного ПЛ основано на методе двойственной регуляризации и предполагает использование двух параметров регуляризации и двух соответствующих условий согласования одновременно. Один из регуляризирующих параметров «отвечает» за регуляризацию двойственной задачи, другой же содержится в сильно выпуклом регуляризирующем добавке к целевому функционалу исходной задачи. Основное предназначение регуляризованного ПЛ — устойчивое генерирование обобщенных минимизирующих последовательностей, аппроксимирующих точное решение задачи по функции и по ограничениям, для целей ее непосредственного практического устойчивого решения.

  6. В работе рассматривается задача о малых движениях вязкой стратифицированной жидкости, частично заполняющей контейнер, который равномерно вращается вокруг оси, сонаправленной с действием силы тяжести. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Исходная начально-краевая задача сводится к задаче Коши для дифференциального уравнения первого порядка в некотором гильбертовом пространстве. После детального изучения свойств операторных коэффициентов доказана теорема о разрешимости полученной задачи Коши. На этой основе найдены достаточные условия существования решения начально-краевой задачи, описывающей эволюцию исходной гидросистемы.

  7. Пусть $H$ - гильбертово пространство и (необязательно ограниченная) последовательность $\{e_n\}_{n=1}^{\infty}$ его элементов содержит ограниченную подпоследовательность $\{e_{n_k}\}_{k=1}^{\infty}$ такую, что $|(e_{n_k},e_{n_m})| \geqslant \alpha > 0$ для любых достаточно больших $k,m \in N, k \neq m$. Доказано, что такая последовательность $\{e_n\}_{n=1}^{\infty}$ не является базисной последовательностью и, следовательно, базисом Шаудера в пространстве $H$. Полученные результаты обобщают и предлагают короткое и более простое доказательство некоторых недавних результатов, полученных в этом направлении.

  8. Пусть $V$ — сепарабельное рефлексивное банахово пространство, непрерывно вложенное в гильбертово пространство $H$ и плотное в нем; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ — заданное множество управлений; $A\colon X\to X^*$ — заданный вольтерров оператор, радиально непрерывный, мотонный и коэрцитивный (вообще говоря, нелинейный). Для задачи Коши, связанной с управляемым эволюционным уравнением вида \[x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{ x\in X\colon x^\prime\in X^*\},\] где $u\in U$ — управление, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ — вольтерров оператор ($W\subset\mathbf{C}(0,T;H)$), доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее для случая линейного оператора $A$ и $V=H=V^*$. Отдельно рассматриваются случаи компактного вложения пространств, усиления условия монотонности и совпадения тройки пространств $V=H=H^*$. В последних двух случаях доказывается также единственность решения. В первом случае применяется теорема Шаудера, в остальных — технология продолжения решения по времени (то есть продолжения вдоль вольтерровой цепочки). Приводятся конкретные примеры задания оператора $A$.

  9. Исследованы нормальные колебания вязкой стратифицированной жидкости, частично заполняющей произвольный сосуд и ограниченной сверху упругой горизонтальной мембраной. При этом рассматривается скалярная модельная задача, отражающая основные особенности векторной пространственной задачи. Получено характеристическое уравнение для собственных значений модельной задачи, изучается структура спектра и асимптотика ветвей собственных значений. Высказываются предположения о структуре спектра колебаний вязкой стратифицированной жидкости, ограниченной упругой мембраной, для произвольного сосуда. Доказано, что спектр задачи дискретен, расположен в правой комплексной полуплоскости симметрично относительно вещественной оси и имеет единственную предельную точку $+\infty$. Более того, спектр определенным образом локализован в правой полуплоскости, зона локации зависит от динамической вязкости жидкости.

  10. Пусть $X$ — гильбертово пространство, $U$ — банахово пространство, $G\colon X\to X$ — линейный оператор такой, что оператор $B_\lambda=\lambda I-G$ является максимальным монотонным при некотором (произвольно заданном) $\lambda\in\mathbb{R}$. Для задачи Коши, связанной с управляемым полулинейным эволюционным уравнением вида \[x^\prime(t)=Gx(t)+f\bigl( t,x(t),u(t)\bigr),\quad t\in[0;T];\quad x(0)=x_0\in X,\] где $u=u(t)\colon[0;T]\to U$ — управление, $x(t)$ — неизвестная функция со значениями в $X$, доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости задачи Коши для некоторого обыкновенного дифференциального уравнения в пространстве $\mathbb{R}$. Решение $x$ понимается в слабом смысле и ищется в пространстве $\mathbb{C}_w\bigl([0;T];X\bigr)$ слабо непрерывных функций. Фактически, обобщается аналогичный результат, доказанный автором ранее для случая ограниченного оператора $G$. Суть указанного обобщения заключается в том, что постулируемые свойства оператора $B_\lambda$ позволяют построить для него аппроксимации Иосиды линейными ограниченными операторами, распространив необходимые нам оценки с «ограниченного» на «неограниченный» случай. В качестве примеров рассматриваются начально-краевые задачи для уравнения теплопроводности и волнового уравнения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref