Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.
-
Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.
-
В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.
-
К задаче Черноусько, с. 62-67Рассматривается задача простого преследования группой преследователей одного убегающего при условии, что среди преследователей имеются как участники, максимальные скорости которых совпадают с максимальной скоростью убегающего, так и участники, у которых максимальные скорости строго меньше максимальной скорости убегающего, и при этом убегающий не покидает пределы выпуклого многогранного множества. Получены условия, при которых преследователи с меньшими возможностями не влияют на разрешимость задачи уклонения.
-
Для современной геометрии важное значение имеет изучение геометрий максимальной подвижности. Максимальная подвижность для $n$-мерной геометрии, задаваемой функцией $f$ пары точек означает существование $n(n+1)/2$-мерной группы преобразований, оставляющей эту функцию инвариантной. Известно много геометрий максимальной подвижности (геометрия Евклида, симплектическая, Лобачевского и т.д.), но полной классификации таких геометрий нет. В данной статье методом вложения решается одна из таких классификационных задач. Суть этого метода состоит в следующем: по известной функции пары точек $g$ трехмерной геометрии находим все невырожденные функции $f$ пары точек четырехмерных геометрий, являющиеся инвариантами группы Ли преобразований размерности 10. В этой статье $g$ - это невырожденные функции пары точек двух гельмгольцевых трехмерных геометрий: $$g = 2\ln(x_i-x_j) + \dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j,$$ $$\ln[(x_i-x_j)^2+(y_i-y_j)^2]+ 2\gamma\,\text{arctg}\dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j.$$ Данные геометрии локально максимально подвижны, то есть их группы движений шестимерны. Задача, решаемая в этой работе, сводится к решению аналитическими методами специальных функциональных уравнений, решения которых ищутся в виде рядов Тейлора. Для перебора различных вариантов применяется пакет математических программ Maple 15. В результате получаются только вырожденные функции пары точек.
-
Рассматриваются две задачи простого преследования группой преследователей группы убегающих. Первая задача посвящена преследованию группой преследователей группы жестко скоординированных убегающих при равных возможностях всех участников. Предполагается, что убегающие не покидают пределы выпуклого многогранного множества, терминальные множества - выпуклые компакты и целью группы преследователей является поимка хотя бы одного убегающего. В терминах начальных позиций и параметров игры получены условия разрешимости задачи преследования и задачи уклонения.
Вторая задача посвящена преследованию группой преследователей группы убегающих в предположении, что убегающие используют программные стратегии, а каждый преследователь может поймать не более одного убегающего. Целью группы преследователей является поимка заданного числа убегающих. Терминальные множества выпуклые компакты, множество допустимых управлений произвольный выпуклый компакт. Получены необходимые и достаточные условия разрешимости задачи преследования.
-
Рассматривается конфликтное взаимодействие групп управляемых объектов. Цель группы преследователей - поймать, а группы убегающих - избежать поимки. Все игроки обладают равными динамическими возможностями. Движение игроков задается дифференциальным уравнением третьего порядка. Все убегающие используют одинаковое управление, поэтому о них можно говорить как о жестко скоординированных инерционных объектах. Доказано, что если выпуклые оболочки, натянутые на начальные ускорения группы преследователей и группы убегающих, не пересекаются, то происходит уклонение от встречи.
-
К задаче группового преследования на плоскости, с. 383-387Рассматриваются две задачи простого преследования на плоскости группой преследователей одного убегающего при условии, что все игроки обладают равными возможностями. В первой задаче множеством значений допустимых управлений игроков является невырожденный треугольник. Получены необходимые и достаточные условия на начальные положения игроков для осуществления поимки тремя преследователями. Во второй задаче множеством значений допустимых управлений игроков является выпуклый компакт с непустой внутренностью. В данной задаче получены необходимые и достаточные условия на конструкцию множества значений допустимых управлений игроков, для которого существуют начальные положения трех игроков, убегающего и двух преследователей, из которых происходит поимка.
-
Рассматривается задача о конфликтном взаимодействии одного убегающего и группы преследователей. Все игроки обладают равными динамическими возможностями. Движение каждого из них описывается дифференциальным уравнением четвертого порядка. Убегающий обладает полной информацией, а преследователи знают только координаты всех игроков. Поимка понимается как совпадение ускорений, скоростей и координат игроков. Предполагается, что начальное положение, скорость и ускорение убегающего принадлежат заданному конусу. Кроме того, предполагается, что третья производная функции, задающей траекторию движения убегающего, в начальный момент времени также принадлежит этому конусу. Доказано, что если число преследователей меньше размерности пространства, то в игре можно избежать «мягкой поимки».
-
Рассмотрена задача оптимального управления движением космического аппарата при коррекции его положения в инерциальной системе координат за счет управляющих моментов, получаемых от ускорений инерционных маховиков бесплатформенной инерциальной навигационной системы. Полученное оптимальное управление обеспечивает плавное изменение ориентации космического аппарата, которое рассматривается как движение по кратчайшей траектории в конфигурационном пространстве специальной ортогональной группы $SO(3)$. Алгоритм управления реализуется с использованием оригинальной процедуры нелинейной сферической интерполяции кватернионов. Основными исполнительными органами ориентации динамического контура управления бесплатформенной инерциальной навигационной системой при решении задачи оптимального управления были выбраны четыре инерционных маховика (три - по осям космического аппарата, четвертый - по биссектрисе). Результаты моделирования верифицируются путем создания анимации корректирующего движения космического аппарата.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.