Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'двойной интеграл':
Найдено статей: 3
  1. На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации потенциала двойного слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho=\left(r^2-d^2\right)^{1/2}$, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^5$, а также на самой границе. Также доказано, что использование для вычисления интегралов стандартных квадратурных формул не нарушает равномерной кубической сходимости аппроксимаций прямого значения потенциала на границе класса $C^6$. При некоторых упрощениях доказано, что использование для вычисления интегралов стандартных квадратурных формул влечет отсутствие равномерной сходимости аппроксимаций потенциала внутри области вблизи любой граничной точки. Теоретические выводы подтверждены результатами численного решения задачи Дирихле для уравнения Лапласа в круговой области.

  2. Рассмотрены новые свойства криволинейного интеграла Римана-Стилтьеса. Доказано, что криволинейный интеграл Римана-Стилтьеса не зависит от пути интегрирования, если интегрируемая и интегрирующая функции зависят только от одной переменной. Найдено новое необходимое условие функциональной зависимости функций двух переменных. Предлагается новый подход к определению двойного интеграла Римана-Стилтьеса, который содержит не одну, а две интегрирующие функции. Рассмотрены общие свойства двойного интеграла Римана-Стилтьеса. Приведены способы вычисления двойного интеграла для случая гладких или кусочно-гладких интегрирующих функций. Получена одна формула для преобразования двойного интеграла Римана-Стилтьеса в повторный интеграл.

  3. В статье разработано приближенно-аналитическое решение задачи конформного отображения внутренних точек произвольного многоугольника на единичный круг. На предварительном этапе задача конформного отображения сформулирована в виде краевой задачи (задача Шварца). Последняя сведена к решению интегрального уравнения Фредгольма второго рода с ядром типа Коши относительно неизвестной комплексной функции плотности на границе области с последующим вычислением интеграла Коши. Разработанное приближенно-аналитическое решение основано на разложении ядра Коши в системе многочленов Лежандра первого и второго рода. Выполнена априорная и апостериорная оценки сходимости и точности заданного решения. Определены экспоненциальная сходимость решения в $L_2\left([0,1]\right)$ и полиномиальная в $C\left([0,1]\right)$. Для наглядного сравнения результативности разработанного решения приведены расчеты на тестовых примерах.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref