Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'дифференциальные уравнения типа Эмдена-Фаулера второго порядка':
Найдено статей: 3
  1. В работе рассматривается дифференциальное уравнение типа Эмдена-Фаулера второго порядка с отрицательными потенциалом $y'' - p(x, y, y') |y|^k \text{ sgn } y=0$ в случае регулярной нелинейности $k>1$. Предполагается, что функция $p(x, u, v)$ положительна, непрерывна по $x$ и удовлетворяет условию Липшица по последним двум аргументам. Исследуется асимптотическое поведение максимально продолженных решений рассматриваемого уравнения. Изучается случай неограниченной сверху и отделенной от нуля снизу функции $p(x, u, v)$. Получены условия существования вертикальной асимптоты у всех нетривиальных максимально продолженных решений уравнения. Кроме того, получены достаточные условия, при которых все нетривиальные максимально продолженные решения уравнения обладают свойством $\displaystyle \lim_{x \to a} |y'(x)| = +\infty$, $\displaystyle \lim_{x \to a} |y(x)| < + \infty$, где $a$ - граничная точка области определения.

  2. В работе рассматриваются нелинейные дифференциальные уравнения $n$-го порядка с младшей производной. При помощи принципа сжимающих отображений исследуется асимптотическая эквивалентность решений этих уравнений в случае экспоненциальной эквивалентности их правых частей. Полученные достаточные условия асимптотической эквивалентности решений являются продолжением и обобщением результатов, изложенных в предыдущих работах автора. Приводится результат, описывающий асимптотическое поведение всех стремящихся к нулю на бесконечности решений дифференциального уравнения второго порядка с регулярной нелинейностью типа Эмдена-Фаулера и нулевой правой частью, возникающего при исследовании квазилинейных эллиптических уравнений. На его основе описывается асимптотическое поведение решений соответствующего уравнения с ненулевой правой частью.

  3. Рассматриваются дифференциальные уравнения типа Эмдена-Фаулера второго порядка с регулярной нелинейностью и ограниченным отрицательным потенциалом, зависящим от независимой переменной, решения и его производной. Приведены результаты о существовании асимптот у нетривиальных решений и оценки расстояний до асимптот решений справа и слева от начальной точки, показана непрерывная зависимость положений асимптот нетривиальных решений от начальных данных. Также доказано существование решений уравнения с произвольной наперед заданной областью определения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref