Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'жесткая задача':
Найдено статей: 9
  1. Естественным обобщением дифференциальных игр двух лиц являются конфликтно управляемые процессы с участием группы управляемых объектов (хотя бы с одной из противоборствующих сторон). При этом наибольшую трудность для исследований представляют задачи конфликтного взаимодействия между двумя группами управляемых объектов. Специфика этих задач требует создания новых методов их исследования. В данной работе рассматривается нелинейная задача группового преследования группы жестко скоординированных (то есть использующих одинаковое управление) убегающих при условии, что маневренность убегающих выше. Цель убегающих - обеспечить мягкое убегание всей группы. Под мягким убеганием понимается несовпадение геометрических координат, ускорений и так далее для убегающего и всех преследователей. Для любых начальных позиций участников построено позиционное управление, обеспечивающее мягкое убегание от группы преследователей всех убегающих.

  2. Исследуются задачи о равновесии трансверсально-изотропной пластины с жесткими включениями. Предполагается, что пластина деформируется в рамках гипотез классической теории упругости. Задачи формулируются в виде минимизации функционала энергии пластины на выпуклом и замкнутом подмножестве пространства Соболева. Установлено, что предельный переход по геометрическому параметру в задачах о равновесии пластины с объемным включением приводит к задаче о пластине с тонким жестким включением. Исследован также случай отслоения тонкого жесткого включения - когда трещина в пластине расположена вдоль одного из берегов включения. В задаче о пластине с отслоившимся тонким включением на трещине задается нелинейное условие непроникания. Это условие имеет вид неравенства (типа Синьорини) и описывает взаимное непроникание противоположных берегов трещины. Для задачи с отслоившимся включением, при достаточной гладкости решения, установлена эквивалентность вариационной и дифференциальной формулировок. Также получены соотношения, описывающие контакт противоположных берегов трещины. Относительно каждой из рассмотренных вариационных задач установлена однозначная разрешимость.

  3. Для двух нестационарных задач группового преследования (обобщенного примера Л.С. Понтрягина и колебательного конфликтно управляемого процесса) с равными динамическими и инерционными возможностями всех участников получены достаточные условия поимки хотя бы одного убегающего, при условии что убегающие используют одно и то же управление.

  4. Караваев А.С., Копысов С.П., Сармакеева А.С.
    Моделирование динамики произвольных тел методом дискретных элементов, с. 473-482

    Рассматриваются постановка и тестовые решения задачи динамического взаимодействия твердых тел произвольной формы в рамках дискретно-элементного моделирования. При дискретизации используется описание тел произвольной формы, составленных из элементов-сфер, жестко связанных между собой. Агломераты строились на нескольких сетках с разной размерностью, что позволило оценить влияние параметров при построении агломератов сфер и гладкости получаемой поверхности. Представлена система уравнений движения агломерата сфер относительно глобальной системы координат, интегрирование которой выполняется на модифицированной схеме Верле. Силы взаимодействия между сферами определяются на основе контактной модели Герца-Миндлина с учетом вязкого демпфирования. Тестирование метода проводилось на задаче взаимодействия двух сфер. Вычислялись траектории движения сфер, представленные агломератом сферических частиц. Полученные результаты сравнивались со случаем движения и взаимодействия сфер в одночастичном приближении.

  5. Рассматривается задача преследования группы жестко скоординированных убегающих в нестационарном конфликтно управляемом процессе с равными возможностями: $$\begin{array}{llllllllcccc} P_i & : & \dot x_i = A(t)x_i + u_i,& u_i \in U(t), & x_i(t_0) = X_i^0, & i = 1,2, \dots, n, \\ E_j & : & \dot y_j = A(t)y_j + v, & v \in U(t) , & y_j(t_0) = Y_j^0 , & j = 1,2, \dots, m. \\ \end{array}$$ Говорят, что в задаче преследования происходит многократная поимка, если заданное количество преследователей ловят убегающих, при этом моменты поимки могут не совпадать: $$x_\alpha (\tau_\alpha) = y_{j_\alpha}(\tau_\alpha), \quad \alpha \in \Lambda, \quad \Lambda \subset \{1,2, \dots, n\}, \quad |\Lambda| = b\quad (n \geqslant b \geqslant 1), \\ j_\alpha \subset \{1,2, \dots, m\}.$$ В задаче о нестрогой одновременной многократной поимке требуется, чтобы моменты поимки совпадали: $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad \alpha \in \Lambda.$$ Одновременная многократная поимка происходит, если совпадают наименьшие моменты поимки: $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad x_\alpha(s) \ne y_{j_\alpha}(s), \quad s \in [t_0, \tau), \quad \alpha \in \Lambda.$$ В данной работе получены необходимые и достаточные условия многократной и нестрогой одновременной многократной поимок.

  6. Рассматриваются две задачи простого преследования группой преследователей группы убегающих. Первая задача посвящена преследованию группой преследователей группы жестко скоординированных убегающих при равных возможностях всех участников. Предполагается, что убегающие не покидают пределы выпуклого многогранного множества, терминальные множества - выпуклые компакты и целью группы преследователей является поимка хотя бы одного убегающего. В терминах начальных позиций и параметров игры получены условия разрешимости задачи преследования и задачи уклонения.

    Вторая задача посвящена преследованию группой преследователей группы убегающих в предположении, что убегающие используют программные стратегии, а каждый преследователь может поймать не более одного убегающего. Целью группы преследователей является поимка заданного числа убегающих. Терминальные множества  выпуклые компакты, множество допустимых управлений  произвольный выпуклый компакт. Получены необходимые и достаточные условия разрешимости задачи преследования.

  7. Для обобщенного уравнения Гинзбурга–Ландау, содержащего как кубическую нелинейность, так и нелинейность более высокой степени, рассмотрена периодическая краевая задача. Показано, что для такого обобщения уравнения Гинзбурга–Ландау может быть реализован вариант докритической жесткой бифуркации двумерных инвариантных торов бегущих волн.

  8. Берестова С.А., Мисюра Н.Е., Митюшов Е.А.
    Кинематическое управление движением колесных транспортных средств, с. 254-266

    В работе рассматривается вывод законов кинематического управления движением трехколесного и четырехколесного экипажей с жесткими колесами вдоль произвольной гладкой траектории. Параметрами управления для трехколесного экипажа выбраны независимые углы вращения ведущих колес. Параметром управления четырехколесного экипажа выбран угол поворота переднего колеса в двухколесной модели автомобиля, определяемый углами поворота передних колес по принципу рулевого управления Аккермана. Установлено, что произведение скорости любой точки корпуса автомобиля на ориентированную кривизну ее траектории является кинематическим инвариантом, определяющим угловую скорость автомобиля. Приведены результаты численного моделирования и анимации движения трехколесного и четырехколесного экипажей, демонстрирующие адекватность предлагаемой модели кинематического управления. Обсуждаются возможности применения установленных законов кинематического управления движением при уточнении алгоритмов параллельной парковки, при решении навигационных задач управления механическими транспортными средствами при помощи навигационных систем ГЛОНАСС и GPS, при решении задач управления мобильными роботами с помощью датчиков слежения, а также при проектировании автодорог, транспортных развязок, паркингов, автозаправок, дорожных пунктов питания и при создании тренажеров.

  9. Изложены базовые принципы линеаризации уравнений произвольной многокомпонентной механической системы. Описаны общие подходы к формированию специализированных численных методов интегрирования этих систем, которые основаны на классических методах прямого интегрирования уравнений динамики метода конечных элементов. Подробно рассматривается метод, базирующийся на известном неявном методе Ньюмарка. Выведены расчетные формулы метода, проведено краткое исследование на устойчивость. Кроме того, приведены примеры тестовых расчетов, выполненных с помощью специализированного метода Ньюмарка в программном комплексе динамического анализа многокомпонентных механических систем EULER.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref