Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В данной работе представлена и проанализирована симметричная стабилизированная коллокационная формулировка метода конечных объемов для стационарной обобщенной задачи Стокса. Этот метод основан на аппроксимации наинизшего порядка (кусочно-постоянные функции) для обеих неизвестных величин: скорости и давления. Стабилизация достигается за счет добавления в формулировку дискретного слагаемого, связанного с давлением. Установлены свойства устойчивости и сходимости метода. В заключение представлены два численных примера, подтверждающие устойчивость и точность предложенного метода.
-
Рассматривается сопряженная задача теплообмена, которая возникает при расчете параметров инфракрасного нагревателя. Приводится постановка задачи для трехмерного турбулентного течения в трубе излучателя с учетом наличия лучистого теплообмена с отражателем и внешнего теплообмена с окружающей средой. Проведен расчет для поставленной задачи.
-
Приводится постановка нелинейной краевой задачи о распространении волн по свободной поверхности слабовязкой жидкости. Решение задачи находится методом переменной во времени частоты, являющимся обобщением метода Стокса для диссипативных волновых процессов. Найдено асимптотическое решение с точностью третьего приближения по волновому параметру. Показано, что частота и декремент затухания нелинейной волны с течением времени стремятся к значениям, соответствующим линейной задаче. Определены нелинейные траектории жидких частиц, а также выражение переносной скорости Стокса в слабовязкой жидкости.
-
Рассматривается задача Коши для уравнений Навье–Стокса над полосой ${\mathbb R}^3 \times [0,T]$ с временем $T>0$ в пространственно-периодической постановке. Доказывается, что задача индуцирует открытые инъективные отображения ${\mathcal A}_s\colon B^{s}_1 \to B^{s-1}_2$, где $B^{s}_1$, $B^{s-1}_2$ суть элементы шкал специально построенных функциональных пространств Бохнера–Соболева, параметризованных индексом гладкости $s \in \mathbb N$. Наконец, мы доказываем, что отображение ${\mathcal A}_s$ сюръективно тогда и только тогда, когда прообраз ${\mathcal A}_s ^{-1}(K)$ любого предкомпактного множества $K$ из образа отображения ${\mathcal A}_s$ ограничен в пространстве Бохнера $L^{\mathfrak s} ([0,T], L ^{{\mathfrak r}} ({\mathbb T}^3))$ с показателями Ладыженской–Проди–Серрина ${\mathfrak s}$, ${\mathfrak r}$.
-
Рассмотрена адаптация уравнений Навье-Стокса к универсальной многосеточной технологии с целью создания высокоэффективного алгоритма для решения задач вычислительной гидродинамики.
-
Рассмотрена нелинейная задача о распространении волн по свободной поверхности слоя вязкой несжимаемой жидкости бесконечной глубины в плоском случае. С помощью метода малого параметра данная нелинейная задача раскладывается на задачи в первых двух приближениях, которые последовательно разрешаются. Получены нелинейные выражения для компонент вектора скорости, динамического давления и формы свободной поверхности. Изучается движение частиц вязкой жидкости, вызванное распространением волны по свободной поверхности. Установлено, что вязкость жидкости оказывает существенное влияние на форму траекторий жидких частиц, которое проявляется как в уменьшении амплитуды колебаний с течением времени, так и в отличии траекторий вблизи свободной поверхности и при заглублении. Исследован нелинейный эффект Стокса, который заключается в наличии приповерхностного течения.
-
Применение метода отсоединенных вихрей в задаче оценки боковой составляющей тяги сверхзвукового сопла, с. 121-128Численно исследуются газодинамические процессы, протекающие в начальный момент работы сверхзвукового сопла с высокой степенью геометрического расширения. Основное внимание уделяется изучению механизмов потери течением осевой симметрии за счет неустойчивости образующихся в сверхзвуковой части сопла зон отрывного течения. Модель нестационарного течения вязкого теплопроводного сжимаемого газа по соплу основана на системе уравнений сохранения в форме Навье-Стокса. Турбулентность исследуемого течения моделируется методом отсоединенных вихрей DES и его модификацией DDES с привлечением полуэмпирической модели Спаларта-Аллмараса. Выполнено сравнение распределения давления на стенке сопла, проекции годографа вектора тяги, мгновенных и осредненных картин течения с экспериментальными данными и численными результатами других авторов. Показано, что применение вихреразрешающего моделирования DES и DDES позволяет адекватно описать основные особенности течения и воспроизвести феномен возникновения боковой составляющей тяги сверхзвукового сопла при приемлемом уровне вычислительных затрат.
-
Решение нестационарных задач аэродинамики на основе вычислительных алгоритмов высокого порядка аппроксимации, с. 140-150Приводится вычислительный алгоритм высокого порядка точности для решения задач аэродинамики и газовой динамики. Метод прямого численного моделирования основан на применении современных схем WENO при аппроксимации по пространству конвективных слагаемых и первых производных системы полных уравнений Навье-Стокса. Вторые производные и диффузионные члены уравнений разрешаются с помощью центрально-разностной схемы высокого порядка точности. Результаты моделирования с использованием метода демонстрируются на примере решения двух задач. Показывается, что вычислительные алгоритмы адекватно воспроизводят физические эффекты, свойственные как дозвуковым течениям (вихревые дорожки), так и сверхзвуковым потокам (разрывы параметров, ударные волны, скачки уплотнения).
-
Рассматриваются два подхода к решению задачи математического моделирования обтекания метаемых тел: численное решение уравнений движения сплошной среды Навье-Стокса, осредненных по Рейнольдсу (RANS - Reynolds-averaged Navier–Stokes), с использованием модели турбулентности и прямое численное моделирование (DNS - Direct Numerical Simulation). Тестирование рассматриваемых подходов проводится при решении задачи обтекания тел вращения с простой геометрией: сферы и цилиндра с конической головной частью, для которых известны значения коэффициентов сопротивления при различных числах Маха. Проведено качественное и количественное сравнение результатов обтекания рассматриваемых тел сверхзвуковым потоком, полученным по методикам RANS и DNS. Апробация методики численного моделирования проводится для метаемого тела (снаряда) характерной формы. Представлены результаты численного моделирования обтекания снаряда для широкого диапазона параметров: чисел Маха и углов нутации. Выполнено сравнение расчетных значений коэффициентов сопротивления с эмпирическими эталонными зависимостями по законам 1943 и 1958 годов.
-
В статье рассматривается модельная задача несжимаемого течения жидкости и переноса тепла в коротком плоском канале с обратным уступом. Цель работы состоит в исследовании влияния граничного условия для потока тепла (температуры) на выходе из канала на характеристики теплопереноса внутри канала. Система уравнений Навье-Стокса и баланса тепла решаются численно с использованием равномерной сетки разрешением $6001\times301$ узлов. Для разностной аппроксимации пространственных производных используется метод контрольного объема второго порядка. Достоверность получаемых решений подтверждена для широкого диапазона числа Рейнольдса $(100 \leqslant \text{Re} \leqslant 1000)$ и числа Прандтля $\text{Pr} = 0.71$ путем сравнения с экспериментальными и теоретическими результатами, найденными в литературе. Анализируются картины течения, поля изотерм перегрева потока и поведение локального числа Нуссельта вдоль нагретой нижней стенки канала в зависимости от выбора выходного граничного условия для потока тепла (температуры). Показано, что этот выбор может оказать существенное влияние на характер прогрева течения внутри всего канала. По результатам исследования выбор сделан в пользу нелинейного граничного условия.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.