Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'задача рассеяния':
Найдено статей: 15
  1. В данной работе рассматривается система Каупа–Буссинеска с самосогласованным источником. Показано, что система Каупа–Буссинеска с самосогласованным источником может быть проинтегрирована методом обратной задачи рассеяния. Для решения рассматриваемой задачи используются прямая и обратная задачи рассеяния уравнения Штурма–Лиувилля с потенциалом, зависящим от энергии. Определена временная эволюция данных рассеяния для уравнения Штурма–Лиувилля с энергозависимыми потенциалами, связанными с решением системы Каупа–Буссинеска с самосогласованным источником. Полученные равенства полностью определяют данные рассеяния при любом $t$, что позволяет применить метод обратной задачи рассеяния для решения задачи Коши для системы Каупа–Буссинеска с самосогласованным источником.

  2. Рассматривается дискретный оператор Шредингера на графе, являющийся гамильтонианом электрона, в приближении сильной связи в системе, состоящей из квантовой проволоки и двух внедренных квантовых точек. Данный оператор описывает двухбарьерную резонансную наноструктуру, причем один из барьеров представляет собой нелокальный потенциал. Описан существенный и абсолютно непрерывный спектр оператора. Изучается задача рассеяния в стационарной постановке для двух возможных направлений распространения частицы. Найдены условия полного отражения и полного прохождения.

  3. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

  4. В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.

    В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.

  5. Работа посвящена интегрированию модифицированного уравнения Кортевега–де Фриза с зависящими от времени коэффициентами, дополнительным членом и интегральным источником в классе быстроубывающих функций с использованием метода обратной задачи рассеяния. В данной работе рассматривается случай, когда оператор Дирака, входящий в пары Лакса, не является самосопряженным, поэтому собственные значения оператора Дирака могут быть кратными. Получена эволюция данных рассеяния для несамосопряженного оператора Дирака, потенциал которого представляет собой решение модифицированного уравнения Кортевега–де Фриза с зависящими от времени коэффициентами, с дополнительным членом и с интегральным источником класса быстроубывающих функций. Приведен пример, иллюстрирующий применение полученных результатов.

  6. В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.

  7. Последние 15 лет в физической литературе активно изучаются майорановские локализованные состояния (МЛС) и сопутствующие их возникновению явления, такие, как изменение кондактанса и эффект Джозефсона, что обусловлено вероятным применением МЛС при создании квантового компьютера. В статье изучены собственные функции одномерного оператора Боголюбова-де Жена с дельтаобразным потенциалом в нуле, описывающие локализованные состояния с энергией в лакуне спектра (сверхпроводящей щели). Найдены вероятности прохождения в задаче рассеяния для этого оператора, когда энергии близки к границе сверхпроводящей щели. Эти задачи исследовались как для единого на всей прямой сверхпроводящего порядка, определяемого вещественной константой $\Delta,$ так и для сверхпроводящего порядка, определяемого функцией $\Delta \theta (-x)+\Delta e^{i\varphi} \theta (x)$ для $\varphi=0,\pi$ (т.е. для нулевого сверхпроводящего тока и тока, близкого к критическому). Используемый гамильтониан можно рассматривать как простейшую модель перехода Джозефсона. Доказано, что в обоих случаях существуют два МЛС, но лишь при определенных значениях параметров, т.е. МЛС неустойчивы. При этом вероятность прохождения равна нулю в обоих случаях.

  8. В статье рассматривается дискретный оператор Шредингера на графе с вершинами на двух пересекающихся прямых, возмущенный убывающим потенциалом. Данный оператор является гамильтонианом электрона вблизи структуры, образованной квантовой точкой и выходящими из нее четырьмя квантовыми проволоками в приближении сильной связи, широко используемом в настоящее время в физической литературе для изучения подобных наноструктур. Доказаны существование и единственность решения соответствующего уравнения Липпмана–Швингера, для решения получена асимптотическая формула. Изучена нестационарная картина рассеяния. Исследуется задача рассеяния для данного оператора в случае малого потенциала, а также в случае, когда малы как потенциал, так и скорость квантовой частицы. Получены асимптотические формулы для вероятностей распространения частицы во всех возможных направлениях.

  9. В настоящее время в физической литературе активно изучаются майорановские локализованные состояния (МЛС) и сопутствующие их возникновению явления, такие как изменение кондактанса, что обусловлено весьма вероятным применением МЛС в квантовых вычислениях. Несмотря на актуальность, строгого математического исследования спектральных свойств и рассеяния для одночастичного оператора Боголюбова-де Жена $H,$ обычно используемого для исследования МЛС, почти не проводилось; методы, предложенные в статье, позволяют получить математически и физически интересные результаты. В работе математически строго изучен вопрос существования МЛС (т.е. существования нулевого собственного значения) для гамильтониана Боголюбова-де Жена в случае бесконечной одномерной $p$-волновой сверхпроводящей структуры при наличии потенциала; получены условия существования МЛС. Также изучена задача рассеяния для оператора Боголюбова-де Жена с потенциалом. При решении данных задач используется функция Грина оператора $H$, которая также найдена в статье.

  10. Рассматривается гамильтониан Боголюбова – де Жена, возмущенный малым потенциалом, описывающий квазичастицы вида «электрон плюс дырка», в частности андреевские локализованные состояния (АЛС) в одномерной сверхпроводящей структуре при наличии примеси. Интерес к упомянутым квазичастицам резко возрос в последние 15-20 лет благодаря открытию в топологических сверхпроводниках майорановских локализованных состояний (МЛС). МЛС представляют собой устойчивые к внешним воздействиям нейтральные квазичастицы с нулевой энергией, весьма перспективные для будущего использования в квантовых вычислениях. Исследование возникновения и поведения, в зависимости от параметров системы и топологической фазы, АЛС, описываемых собственными функциями гамильтониана Боголюбова – де Жена, интересно как с математической точки зрения, в сравнении с обычным оператором Шрёдингера, так и с физической, поскольку может прояснить предпосылки возникновения МЛС в топологически нетривиальной фазе и майораноподобных состояний (часто играющих роль МЛС) в топологически тривиальной фазе. Изучение рассеяния интересно тем, что вероятность прохождения квазичастицы через потенциальный барьер пропорциональна кондактансу, который можно измерить в эксперименте, что в принципе дает возможность связать величину кондактанса с наличием АЛС. В статье найдены условия возникновения собственных значений (энергий квазичастиц) в сверхпроводящей щели, имеющейся в непрерывном спектре гамильтониана, а также их зависимость от параметров как в топологически нетривиальной, так и в топологически тривиальной фазах. Кроме того, исследована задача рассеяния для энергий вблизи границы щели; в частности, найдена вероятность прохождения квазичастицы через потенциальный барьер как функция от параметров системы.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref