Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена дифференциальным включениям (д.в.) на конечном промежутке времени. Обсуждаются вопросы, касающиеся вычисления множеств достижимости д.в. Как правило, множества достижимости не поддаются эффективному аналитическому описанию. В то же время часто возникает потребность в их вычислении. Довольно часто она появляется, например, в теории управления, стимулируя развитие методов и алгоритмов приближенного вычисления множеств достижимости.
-
Рассматривается стационарная управляемая система в конечномерном эвклидовом пространстве и на конечном промежутке времени. Изучается задача о сближении управляемой системы с компактным целевым множеством на заданном промежутке времени. Один из подходов к решению рассматриваемой задачи о сближении основан на выделении в пространстве позиций множества разрешимости, т.е. множества всех позиций системы, из которых, как из начальных, разрешима задача о сближении. Конструирование множества разрешимости - самостоятельная сложная и трудоемкая задача, которую удается точно решить лишь в редких случаях. В настоящей работе рассматриваются вопросы приближенного конструирования множества разрешимости в задаче о сближении нелинейной стационарной управляемой системы. Эта задача, как известно, тесно сопряжена с задачей конструирования интегральных воронок и трубок траекторий управляемых систем. Интегральные воронки управляемых систем можно приближенно конструировать по (временным) шагам как наборы соответствующих множеств достижимости, поэтому одним из основных элементов разрешающей конструкции в настоящей работе являются множества достижимости. В работе предлагается схема приближенного вычисления множества разрешимости задачи о сближении управляемой стационарной системы на конечном промежутке времени. В основе этой схемы лежит сведение к приближенному вычислению множеств разрешимости конечного числа более простых задач - задач о сближении с целевым множеством в фиксированные моменты времени из заданного временного промежутка. При этом моменты времени должны выбираться достаточно плотно в упомянутом промежутке времени. В работе проведено математическое моделирование задачи о сближении механической системы «Трансляционный осциллятор с ротационным актуатором». Представлено графическое сопровождение решения задачи.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из основных задач математической теории управления - задача о сближении фазового вектора управляемой системы с компактным целевым множеством в фазовом пространстве в фиксированный момент времени. В этой работе в качестве целевого множества выбрано множество Лебега скалярной липшицевой функции, определенной на фазовом пространстве. Упомянутая задача о сближении тесно связана с многими важными и ключевыми задачами теории управления, в частности с задачей об оптимальном по быстродействию приведении управляемой системы на целевое множество. Из-за сложности задачи о сближении для нетривиальных управляемых систем аналитическое представление решений невозможно даже для относительно простых управляемых систем. Поэтому в настоящей работе мы изучаем прежде всего вопросы, связанные с конструированием приближенного решения задачи о сближении. Конструирование приближенного решения тем методом, который изложен в работе, связано прежде всего с конструированием интегральной воронки управляемой системы, представленной в так называемом «обратном» времени. К настоящему времени известно несколько алгоритмов конструирования разрешающего программного управления в задаче о сближении. Здесь представлен алгоритм построения управления, основанный на максимальном притяжении движения системы к множеству разрешимости задачи о сближении. В работе приведены примеры.
-
Исследуются условия, при которых управляемая система ẋ = f(t, x, u), u ∈ U(t, x), вместе с замыканием множества сдвигов (относительно времени t) управляемой системы обладает свойством равномерной локальной или равномерной глобальной достижимости на заданном отрезке времени. Не предполагается, что функция (t, x) → U(t, x), задающая геометрические ограничения на допустимые управления u(t, x) ∈ U(t, x), имеет выпуклые компактные образы и не предполагается, что соответствующее управляемой системе дифференциальное включение имеет выпуклые образы.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве и на конечном промежутке времени, зависящая от параметра. Изучаются множества достижимости и интегральные воронки дифференциального включения, соответствующего управляемой системе, содержащей параметр. При исследовании многочисленных задач теории управления и дифференциальных игр, конструировании их решений и оценивании погрешностей применяются различные теоретические подходы и ассоциированные с ними вычислительные методы. К упомянутым задачам принадлежат, например, различного рода задачи о сближении, разрешающие конструкции которых могут быть описаны достаточно просто в терминах множеств достижимости и интегральных воронок. В настоящей работе изучается зависимость множеств достижимости и интегральных воронок от параметра: оценивается степень этой зависимости от параметра при определенных условиях на управляемую систему. Степень зависимости интегральных воронок исследована на предмет изменения их объема при варьировании параметра. Для оценки этой зависимости вводятся системы множеств в фазовом пространстве, аппроксимирующие множества достижимости и интегральные воронки на заданном промежутке времени, отвечающие конечному разбиению этого промежутка. При этом сначала оценивается степень зависимости аппроксимирующей системы множеств от параметра, и затем эта оценка используется при оценке зависимости объема интегральной воронки дифференциального включения от параметра. Такой подход естественен и особенно полезен при изучении конкретных прикладных задач управления, при решении которых в конечном итоге приходится иметь дело не с идеальными множествами достижимости и интегральными воронками, а с их аппроксимациями, отвечающими дискретному представлению временного промежутка.
-
Рассматривается стационарная управляемая система в евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из центральных в теории управления задач задача о сближении управляемой системы с множеством в фазовом пространстве системы в фиксированный (конечный) момент времени. Эта задача тесно связана с многими ключевыми задачами теории управления, например, с задачей об оптимальном быстродействии. В связи с этим представляется важным иметь эффективные алгоритмы построения решений этой задачи. Из-за сложности задачи невозможно аналитическое описание решений даже в относительно простых случаях. Построение приближенных решений задачи связано с конструированием интегральной воронки управляемой системы, но обращенной во времени. В работе приводится один алгоритм приближенного построения интегральной воронки, представляющей собой конечную аппроксимацию множества разрешимости задачи о сближении. В работе также описана процедура приближенного вычисления разрешающего управления, которая включает в себя запоминание локальных управлений. Приводится иллюстрирующий пример механической управляемой системы.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве на конечном промежутке времени. Изучается задача о сближении системы с заданным компактом в конечный момент времени. Обсуждается проблема приближенного решения задачи о сближении. Используется подход к построению приближенного решения задачи, основу которого составляют конструкции, базирующиеся на понятии множества разрешимости задачи о сближении. Вводится понятие управления-компенсатора как с дополнительными управляющими воздействиями, так и без них. Предлагается новая схема приближенного попятного построения множества разрешимости, а также схема конструирования программного управления, разрешающего приближенно задачу о сближении. В ней управляющее воздействие разбивается на «основное» и «компенсирующее». Построена оценка отклонения управляемой системы от целевого множества в конечный момент времени и тем самым показано, что использование в процессе управления дополнительного управления-компенсатора может существенно улучшить результат управления системой.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.