Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе выводится эволюция данных рассеяния спектральной задачи, связанной с нелинейным эволюционным уравнением Гарри Дима с самосогласованным источником интегрального типа. Полученные равенства полностью определяют данные рассеяние при любом $t$, что позволяет применить метод обратной задачи рассеяния для решения задачи Коши для уравнения Гарри Дима с источником интегрального типа.
-
В данной работе решается задача Коши для уравнения Кортевега-де Фриза с нагруженными членами и самосогласованным источником в классе быстроубывающих функций. Для решения этой задачи используется метод обратной задачи рассеяния. Получена эволюция данных рассеяния самосопряженного оператора Штурма-Лиувилля, коэффициент которого является решением уравнения Кортевега-де Фриза с нагруженными членами и самосогласованным источником. Приведены примеры, иллюстрирующие применение полученных результатов.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.