Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'краевое условие на бесконечности':
Найдено статей: 2
  1. В полубесконечном цилиндре рассматривается поведение решений уравнения Лапласа, удовлетворяющих на боковой поверхности Γ цилиндра третьему краевому условию

    (∂u/∂v+β(x)u)|Γ=0,

    где β(x)≥0. Показано, что любое ограниченное решение на бесконечности стабилизируется к некоторой постоянной, обладая при этом конечным интегралом Дирихле.  Получены условия убывания в бесконечности коэффициента β(x) при u в граничном условии, при которых поведение решений близко к поведению решений задачи Дирихле (дихотомия решений, стремление ограниченного решения к 0) либо задачи Неймана (трихотомия решений, стремление ограниченных решений к постоянной, вообще говоря отличной от 0). Основное условие, определяющее близость третьей краевой задачи к задаче Дирихле либо Неймана, получено в терминах соответственно бесконечности или конечности  интеграла ∫Γx1β(x)dS, где переменная x1 соответствует направлению оси цилиндра.

  2. Рассматриваются задачи управления на бесконечном промежутке времени со свободным правым концом. Получены необходимые условия сильной оптимальности. Сам метод доказательства фактически следует классической работе Халкина, а построенное в работе краевое условие на бесконечности является усилением условия, предложенного Сейерстадом. Построенная в работе полная система соотношений принципа максимума позволяет выписать для сопряженной переменной выражение в виде несобственного интеграла, зависящего лишь от разворачивающейся траектории. С.М. Асеев, А.В. Кряжимский, В.М. Вельев получали такое выражение в качестве необходимого условия в некоторых классах задач управления. Сильная оптимальность в ряде случаев позволяет создать переопределенную систему соотношений; в работе получены условия, достаточные для этого. Разобран пример.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref