Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.
-
Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.
-
Получены необходимые и достаточные условия разрешимости периодической краевой задачи для всех линейных функционально-дифференциальных уравнений второго порядка с заданной нормой функционального оператора.
-
О единственности решения задачи мультипликативного управления для модели дрейфа–диффузии электронов, с. 3-18Исследуется задача мультипликативного управления для стационарной диффузионно-дрейфовой модели зарядки полярного диэлектрика. Роль управления играет старший коэффициент в уравнении модели, имеющий смысл коэффициента диффузии электронов. Глобальная разрешимость краевой задачи и локальная единственность ее решения, а также разрешимость экстремальной задачи доказана в предыдущих работах авторов. В настоящей работе для задачи управления выводится система оптимальности и устанавливаются условия локальной регулярности множителя Лагранжа. На основе анализа данной системы доказывается локальная единственность решения задачи мультипликативного управления для конкретных функционалов качества.
-
В статье изучается существование положительных решений на отрезке $[0,1]$ двухточечной краевой задачи для одного нелинейного функционально-дифференциального уравнения третьего порядка с интегральным граничным условием на одном из концов отрезка. С помощью теоремы Го–Красносельского о неподвижной точке, с использованием некоторых свойств функции Грина соответствующего дифференциального оператора, получены достаточные условия существования по меньшей мере одного положительного решения рассматриваемой задачи. Приведен пример, иллюстрирующий полученные результаты.
-
О разрешимости периодической краевой задачи для линейного функционально-дифференциального уравнения, с. 12-24Получены необходимые и достаточные условия однозначной разрешимости периодической краевой задачи для функционально-дифференциального уравнения с монотонными операторами.
-
Для общей краевой задачи функционально-дифференциального уравнения получены условия непрерывной зависимости решения от параметров. Результаты применены к исследованию корректности линейной общей краевой задачи для нелинейного дифференциального уравнения с отклоняющимся аргументом и непрерывной зависимости периодических решений управляемых систем от значений управления и отклонения аргумента.
-
Бифуркации в системе Рэлея с диффузией, с. 499-514Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.
-
Рассматриваются вопросы разрешимости краевых задач для линейных функционально-дифференциальных уравнений. Предлагаются утверждения, позволяющие получать условия существования единственного решения, неотрицательности функции Грина и фундаментального решения однородного уравнения. Для применения этих утверждений требуется задать «эталонную» краевую задачу, обладающую соответствующими свойствами, и определить некоторый оператор по приведенному правилу через операторы, порожденные исследуемой и «эталонной» задачами. Если спектральный радиус этого оператора меньше 1, то рассматриваемая краевая задача однозначно разрешима. Аналогично: для получения условий неотрицательности функции Грина и фундаментального решения требуется определить по приведенному в работе правилу специальный оператор и проверить его положительность. Рассмотрен пример применения полученных утверждений к конкретной краевой задаче с интегральным краевым условием для уравнения, содержащего отклонения в аргументе неизвестной функции и ее производной.
-
Численно-аналитический метод решения краевой задачи для обобщенных уравнений влагопереноса, с. 19-34Работа посвящена рассмотрению качественно новых уравнений влагопереноса, которые являются обобщением уравнения Аллера и уравнения Аллера-Лыкова. Данное обобщение дает возможность отражения в характере исходных уравнений специфических особенностей изучаемых массивов, их структуры, физических свойств, протекающих в них процессов посредством введения понятия фрактальной скорости изменения влажности. Для этих уравнений с дробной по времени производной Римана-Лиувилля с краевыми условиями первого рода получены решения системы разностных уравнений с постоянными коэффициентами, возникающих при использовании метода прямых. Получены априорные оценки, из которых следует сходимость решений систем обыкновенных дифференциальных уравнений с переменными коэффициентами дробного порядка. На тестовых примерах проведены численные эксперименты, подтверждающие теоретические результаты, полученные в работе.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.