Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассматриваются приближенные решения неантагонистических дифференциальных игр. Приближенное равновесие по Нэшу может быть построено по заданному решению вспомогательной стохастической игры с непрерывным временем. Мы рассматриваем случай, когда динамика вспомогательной игры задается марковской цепью с непрерывным временем. Для этой игры функция цены определяется решением системы обыкновенных дифференциальных включений. Таким образом, мы получаем конструкцию приближенного равновесия по Нэшу с выигрышами игроков, близкими к решениям системы обыкновенных дифференциальных включений. Также предложен способ построения марковской игры с непрерывным временем, аппроксимирующей исходную игру.
-
Позиционные стратегии в задачах управления средним полем на пространстве конечного числа состояний, с. 15-21Рассматривается задача оптимального управления системой бесконечного числа однотипных агентов. Пространство допустимых для агентов состояний является конечным. В рассматриваемой постановке имеется общий для всех агентов оптимизируемый функционал и общий центр управления, выбирающий стратегию для агентов. Предполагается, что выбираемая стратегия является позиционной. В настоящей работе рассматривается случай, когда динамика состояний агентов задается некоторой марковской цепью с непрерывным временем. Предполагается, что матрица Колмогорова этой цепи в каждом состоянии зависит от текущего состояния, выбранного управления и распределения всех агентов. Для такой задачи в работе показано, что решение в классе позиционных стратегий может быть построено на основе решения детерминированной задачи оптимального управления в конечномерном фазовом пространстве.
-
Аппроксимация функции цены дифференциальной игры с критерием, задаваемым условием минимизации, с. 536-561В статье рассматривается аппроксимация функции цены антагонистической дифференциальной игры с критерием, задаваемым условием минимизации некоторой величины вдоль реализовавшейся траектории, решениями стохастических игр с непрерывным временем и моментом остановки, управляемым одним из игроков. Отметим, что если в качестве вспомогательной игры выбрана стохастическая дифференциальная игра, то ее функция цены задается параболическим уравнением второй степени в частных производных с дополнительными ограничениями в форме неравенств, в то время как для случая вспомогательной игры с динамикой, задаваемой марковской цепью, функция цены определяется системой обыкновенных дифференциальных уравнений с дополнительными ограничениями. Развиваемый в статье метод аппроксимации основан на концепции стохастического поводыря, впервые предложенном в работах Н.Н. Красовского и А.Н. Котельниковой.
-
О предельном распределении числа серий в полиномиальной последовательности, управляемой цепью Маркова, с. 324-335Настоящая работа посвящена исследованию асимптотических свойств числа серий в последовательности дискретных случайных величин, управляемых цепью Маркова с конечным числом состояний. Состояние цепи на каждом шаге определяет закон распределения знаков в управляемой последовательности на этом шаге. Такая случайная последовательность представляет собой модель скрытой марковской цепи. При помощи метода Чена-Стена получена оценка расстояния по вариации между распределением числа серий длины не меньше заданной в случайной последовательности, управляемой цепью Маркова, и сопровождающим распределением Пуассона. Для ее вывода сначала рассматривалась последовательность из независимых неоднородных полиномиальных случайных величин, а затем использован прием, позволяющий получить оценку расстояния по вариации между смешанным пуассоновским распределением и пуассоновским распределением с параметром, равным среднему числу серий длины не меньше заданной. Эта оценка строится на основе дисперсии параметра смешанного пуассоновского распределения и выведенной ранее оценки для расстояния по вариации для полиномиальной схемы. Отдельно рассмотрен случай стационарной цепи Маркова. При помощи полученных оценок доказаны пуассоновская и нормальная предельные теоремы для числа серий длины не меньше заданной, а также найдено предельное распределение для наибольшей длины серии в управляемой случайной последовательности.
-
Стохастические дифференциальные системы со случайными запаздываниями в форме дискретных цепей Маркова, с. 501-516В работе дан обзор проблем, приводящих к необходимости анализа моделей линейных и нелинейных динамических систем в форме стохастических дифференциальных уравнений со случайными запаздываниями различного типа, а также представлены некоторые известные методы решения этих задач. Далее в статье предлагаются новые подходы к приближенному анализу линейных и нелинейных стохастических динамических систем, изменения запаздываний которых описываются дискретной марковской цепью с непрерывным временем. Используемые подходы базируются на сочетании классического метода шагов, расширения пространства состояния стохастической системы и метода статистического моделирования (Монте-Карло). В рассматриваемом случае такой подход позволил упростить задачу и привести исходные уравнения к системам стохастических дифференциальных уравнений без запаздывания. Более того, для линейных систем получена замкнутая последовательность систем обыкновенных дифференциальных уравнений увеличивающейся размерности относительно функций условных математических ожиданий и ковариаций вектора состояния. Изложенная схема демонстрируется на примере стохастической системы второго порядка, изменения запаздывания которой описываются марковской цепью с пятью состояниями. Все расчеты и построение графиков проводились в среде математического пакета Mathematica с помощью программы, написанной на входном языке этого пакета.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.