Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О равномерной глобальной достижимости двумерных линейных систем с локально интегрируемыми коэффициентами, с. 178-192Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами $$ \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1)$$ Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t),$ $t\geqslant 0.$ Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad\qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы $(2)$ означает существование такой матричной функции $U(t),$ $t\geqslant 0,$ которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N,$ $\det H_k>0.$ Представленная задача решается в предположении равномерной полной управляемости системы $(1),$ соответствующей замкнутой системе $(2),$ т.е. при условии существования таких $\sigma>0$ и $\gamma>0,$ что при любых начальном моменте времени $t_0\geqslant 0$ и начальном состоянии $x(t_0)=x_0\in \mathbb{R}^n$ системы (1) на отрезке $[t_0,t_0+\sigma]$ найдется измеримое и ограниченное векторное управление $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ переводящее вектор начального состояния этой системы в ноль на данном отрезке. Доказано, что в двумерном случае, т.е. при $n=2,$ свойство равномерной полной управляемости системы $(1)$ является достаточным условием равномерной глобальной достижимости соответствующей системы $(2).$
-
После статьи Молодцова [Molodtsov D. Soft set theory — First results // Computers and Mathematics with Applications. 1999. Vol. 37. No. 4-5. P. 19-31.] теория мягких множеств начала стремительно развиваться. Несколько авторов ввели различные операции, отношения, результаты и т.д., а также другие аспекты в теории мягких множеств и гибридных структур некорректно, несмотря на их широкое применение в математике и смежных областях. В своей работе [Molodtsov D.A. Equivalence and correct operations for soft sets // International Robotics and Automation Journal. 2018. Vol. 4. No. 1. P. 18-21.], Молодцов, отец теории мягких множеств, указал на несколько неверных результатов и понятий. Молодцов [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] также заявил, что понятие мягкого множества не везде было полностью понято и использовано. В связи с этим важно пересмотреть причуды этих представлений и дать формальное изложение понятия эквивалентности мягкого множества. Молодцов уже исследовал многие корректные операции над мягкими множествами. Мы используем некоторые понятия и результаты Молодцова [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] для создания матричных представлений, а также связанных с ними операций над мягкими множествами, и для количественной оценки сходства между двумя мягкими множествами.
-
Ряд задач в теории характеристических показателей Ляпунова линейных дифференциальных систем
ẋ=A(t)x, x∈Rn, t≥0,
сводится к изучению влияния возмущений коэффициентов на характеристические показатели и другие асимптотические инварианты возмущенных систем
ẏ=A(t)y+Q(t)y, y∈Rn, t≥0.
При этом возмущения коэффициентов предполагаются принадлежащими некоторым классам малости, то есть определенным подмножествам множества KCn(R+) кусочно-непрерывных и ограниченных на положительной полуоси n×n-матриц. Обычно используемые классы возмущений, например бесконечно малые (исчезающие в бесконечности), экспоненциально убывающие либо суммируемые на полуоси, задаются конкретными аналитическими условиями, но общее определение класса малости в теории показателей отсутствует. На основе анализа свойств общепринятых классов малости нами предложено аксиоматическое определение класса малости возмущений коэффициентов линейных дифференциальных систем, которому удовлетворяет большинство таких классов, используемых в теории характеристических показателей. Это определение достаточно громоздко. Для более компактной характеристики классов малости предложено использовать следующее их свойство: множество возмущений удовлетворяет предложенному определению класса малости тогда и только тогда, когда оно является полной матричной алгеброй над произвольным нетривиальным идеалом кольца функций KC1(R+) (с поточечным умножением), содержащим хотя бы одну строго положительную функцию.
-
Матричный шар третьего типа и обобщенный шар Ли, связанные с классическими областями, играют важную роль в теории функций многих комплексных переменных. В данной работе вычислены объемы матричного шара третьего типа и обобщенного шара Ли. Полные объемы этих областей необходимы для нахождения ядер интегральных формул для этих областей (ядра Бергмана, Коши-Сегё, Пуассона и т. д.). Кроме того, он используется для интегрального представления функции, голоморфной на этих областях, в теореме о среднем значении и других важных понятиях. Результаты, полученные в этой статье, являются общим случаем результатов Хуа Ло-кена, и его результаты в частных случаях совпадают с нашими результатами.
-
Рассматривается линейная нестационарная управляемая система $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ с кусочно-непрерывными и ограниченными $\omega$-периодическими матрицами коэффициентов $A(\cdot)$ и $B(\cdot)$. Управление в системе (1) строится по принципу линейной обратной связи $u=U(t)x$ с кусочно-непрерывной и ограниченной матричной функцией $U(t)$, $t\in \mathbb{R}$. Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы (2) означает существование такой матричной функции $U(t)$, $t\in \mathbb{R}$, которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb{Z}$, $\det H_k>0$. Представленная задача решается в предположении равномерной полной управляемости (в смысле Калмана) системы (1), соответствующей замкнутой системе (2), т.е. при условии существования для системы (1) таких чисел $\sigma>0$ и $\alpha_i>0$, $i=\overline{1,4}$, что при всяких числе $t_0\in\mathbb{R}$ и векторе $\xi\in \mathbb{R}^n$ справедливы неравенства $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ в которых $X(t,s)$ - матрица Коши линейной системы (1) при $u(t)\equiv0.$ Доказано, что свойство равномерной полной управляемости (в смысле Калмана) периодической системы (1) является необходимым и достаточным условием равномерной глобальной достижимости соответствующей системы (2).
-
Представлена классификация форм уравнений динамики систем связанных твёрдых тел со структурой дерева. В основе классификации – компактные матричные формы записи уравнений кинематики и динамики систем тел, полученные с использованием понятия матрицы кинематической структуры и геометрического подхода при описании относительного движения. Единая форма записи уравнений движения удобна для представления и сравнения различных подходов к моделированию динамики систем твёрдых тел. Приведён сравнительный анализ вычислительной эффективности различных методов составления и разрешения уравнений движения систем твёрдых тел.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.