Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'метод погранфункций':
Найдено статей: 2
  1. В статье исследуются асимптотические поведения решений сингулярно возмущенных двухточечных краевых задач на отрезке. Объектом исследования является линейное неоднородное обыкновенное дифференциальное уравнение второго порядка с малым параметром при старшей производной искомой функций. Особенности рассматриваемых задач состоят в том, что малый параметр находится при старшей производной искомой функций и соответствующее невозмущенное дифференциальное уравнение первого порядка имеет иррегулярную особую точку на левом конце отрезка. На концах отрезка ставятся краевые условия. Рассматриваются две задачи, в одном функция перед первой производной искомой функций не положительна на рассматриваемом отрезке, а во втором не отрицательна. Асимптотические разложения задач строятся классическим методом пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Однако напрямую этот метод применить невозможно, так как внешнее решение имеет особенность. Мы сначала убираем эту особенность из внешнего решения, затем применяем метод пограничных функций. Построенные асимптотические разложения обоснованы с помощью принципа максимума, т.е. получены оценки для остаточных функций.

  2. Исследуется асимптотическое поведение решения задачи Дирихле для бисингулярно возмущенного эллиптического уравнения второго порядка в кольце с двумя независимыми переменными. Для построения асимптотического разложения решения задачи применяется модифицированная схема метода пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Предлагаемый метод отличается от метода согласования тем, что нарастающие особенности внешнего разложения фактически из него убираются и с помощью вспомогательного асимптотического ряда полностью вносятся во внутренние разложения, а от классического метода пограничных функций здесь пограничные функции убывают степенным характером, а не экспоненциально. Асимптотическое разложение решения представляет собой ряд Пюизё. Полученное асимптотическое разложение решения задачи Дирихле обосновано принципом максимума.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref