Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'нелинейное эволюционное уравнение':
Найдено статей: 9
  1. В работе рассматривается краевая задача для нелинейного эволюционного уравнения в частных производных, приведенная в перенормированном виде. Данная краевая задача возникает в механике роторных систем и описывает поперечные колебания вращающегося ротора постоянного сечения из вязкоупругого материала, концы которого шарнирно закреплены. Изучен вопрос об устойчивости нулевого состояния равновесия, найдено критическое значение скорости вращения ротора, при превышении которого возникают незатухающие колебания. Найдены точные решения изучаемой краевой задачи в виде одномодовых по пространственной переменной и периодической по времени функций. Выведены условия устойчивости таких решений, а также в ряде случаев дан анализ условий устойчивости. В работе показано отсутствие многомодовых периодических по времени решений. Проанализированы базовые, но важные с прикладной точки зрения частные случаи данной нелинейной краевой задачи. Все результаты анализа нелинейной краевой задачи носят аналитический характер. Их вывод опирается на качественную теорию бесконечномерных динамических систем.

  2. Проведен обзор моделей, приводящих к неинтегрируемому уравнению Островского и его обобщениям, не имеющим точных уединенно-волновых решений. Приведен краткий вывод уравнения Островского для продольных волн в геометрически нелинейном стержне, лежащем на упругом основании. Показано, что в случае осесимметричного распространения пучка продольных волн в физически нелинейной цилиндрической оболочке, взаимодействующей с нелинейно-упругой средой, для компоненты перемещения возникает обобщенное уравнение Буссинеска-Островского шестого порядка. Построено точное кинкоподобное решение этого уравнения, установлена связь с обобщенным нелинейным уравнением Шрёдингера и найдено решение последнего уравнения в форме устойчивой солитоноподобной бегущей волны с монотонно затухающими или колебательными хвостами.

  3. Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.

  4. Рассматривается нелинейное эволюционное операторное уравнение второго рода $\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$, $\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$, в произвольном банаховом пространстве $X$, с эволюционными (вольтерровыми) операторами $\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$, $f[u]\colon W[0;T]\to L_p\bigl([0;T];Y\bigr)$ общего вида, $Y$ - произвольное банахово пространство, $u\in\mathcal{D}$ - управляющий параметр. Для указанного уравнения доказываются теорема единственности решения, а также теорема о достаточных условиях тотально (по множеству допустимых управлений) глобальной разрешимости при варьировании управления. При некоторых естественных предположениях, связанных с поточечными по времени $t$ оценками, заключение об однозначной тотально глобальной разрешимости делается, исходя из факта глобальной разрешимости системы сравнения, в качестве которой выступает система функционально-интегральных неравенств (можно заменить ее системой уравнений аналогичного типа, а в некоторых случаях - системой обыкновенных дифференциальных уравнений) относительно функций одного переменного $t\in[0;T]$ со значениями в пространстве $\mathbb{R}$. В качестве примера устанавливаются условия однозначной тотально глобальной разрешимости управляемой нелинейной нестационарной системы уравнений Навье-Стокса.

  5. Пусть $H$ — банахово пространство, $T>0$, $\sigma\in[1;\infty]$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T)$, индуцированная сужениями из пространства $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ — вольтерров оператор; $f[u]\colon W\to L_\sigma(0,T;H)$ — управляемый вольтерров оператор, зависящий от управления $u\in U$. Рассматривается уравнение вида $$ x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W. $$ Для этого уравнения устанавливаются признаки тотально (по множеству допустимых управлений) глобальной разрешимости при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее, на этот раз при других, более удобных для практического использования условиях (хотя и в более частной постановке). Отдельно рассматриваются случаи: 1) компактного вложения пространств и непрерывности операторов $\mathcal{F}$, $f[u]$ (такой подход автором ранее не использовался); 2) выполнения локально-интегрального аналога условия Липшица относительно указанных операторов. Во втором случае доказывается также единственность решения. В первом случае применяется теорема Шаудера, во втором — технология продолжения решения по времени, то есть продолжения вдоль вольтерровой цепочки. В качестве примера рассматривается нелинейное волновое уравнение в пространстве $\mathbb{R}^n$.

  6. Пусть n,m, ℓ, s ∈ N – заданные числа, П ⊂ Rn – измеримое по Лебегу множество, X, Z – банаховы идеальные пространства измеримых на П функций. Рассматривается нелинейное операторное уравнение:

    x = θ + AF[x], x ∈ X, (1)

    где A : Zm → X – линейный ограниченный оператор, F : X → Zm – некоторый оператор. Уравнение (1) является естественной формой описания широкого класса сосредоточенных и распределенных систем. Ранее В.П. Политюковым был предложен метод монотонизации для обоснования разрешимости уравнения вида (1) и получения поточечных оценок решения. Суть его состояла в том, что разрешимость уравнения (1) доказывалась (помимо прочих условий) для случая, когда I) оператор F допускал поправку вида G = λI до монотонного оператора F[x] = F[θ+x]+G[x] такую, что II) (I +AG)−1A > 0 (λ > 0, I  тождественный оператор). Как видно из примеров, приведенных в данной статье, условия I) и II) могут противоречить друг другу, что сужает сферу применения метода. Основной результат статьи в том, что в случае оператора A, обладающего свойством вольтерровости, естественным для эволюционных уравнений, требование монотонизируемости I) можно заменить требованием оценки оператора F на некотором конусном отрезке сверху и снизу через линейный оператор G плюс фиксированный элемент. Доказывается, что для глобальной разрешимости начально-краевой задачи, связанной с полулинейным эволюционным уравнением, достаточно, чтобы аналогичная начально-краевая задача, связанная с линейным уравнением, полученным путем оценки правой части исходного полулинейного уравнения на некотором конусном отрезке, имела положительное решение. В качестве иллюстрации рассматривается применение указанных результатов к системе Гурса–Дарбу, задаче Коши для волнового уравнения и первой краевой задаче для уравнения диффузии.

  7. Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$, $F[\cdot;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Для операторного уравнения $x=F[x;u]$, $x\in W$, вводится система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Устанавливается, что при естественных предположениях относительно оператора $F$ для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения. Сам по себе этот факт аналогичен некоторым результатам, установленным автором ранее. Центральный результат статьи составляет ряд признаков устойчивой глобальной разрешимости функционально-интегральных уравнений, упомянутых выше, без предположения типа локальной липшицевости правой части. В качестве содержательного примера, представляющего самостоятельный интерес, рассматривается нелинейная нестационарная система Навье–Стокса в пространстве $\mathbb{R}^3$.

  8. Уразбоев Г.У., Бабаджанова А.К., Сапарбаева Д.Р.
    Интегрирование уравнения Гарри Дима с источником интегрального типа, с. 285-295

    В работе выводится эволюция данных рассеяния спектральной задачи, связанной с нелинейным эволюционным уравнением Гарри Дима с самосогласованным источником интегрального типа. Полученные равенства полностью определяют данные рассеяние при любом $t$, что позволяет применить метод обратной задачи рассеяния для решения задачи Коши для уравнения Гарри Дима с источником интегрального типа.

  9. Пусть $V$ — сепарабельное рефлексивное банахово пространство, непрерывно вложенное в гильбертово пространство $H$ и плотное в нем; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ — заданное множество управлений; $A\colon X\to X^*$ — заданный вольтерров оператор, радиально непрерывный, мотонный и коэрцитивный (вообще говоря, нелинейный). Для задачи Коши, связанной с управляемым эволюционным уравнением вида \[x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{ x\in X\colon x^\prime\in X^*\},\] где $u\in U$ — управление, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ — вольтерров оператор ($W\subset\mathbf{C}(0,T;H)$), доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее для случая линейного оператора $A$ и $V=H=V^*$. Отдельно рассматриваются случаи компактного вложения пространств, усиления условия монотонности и совпадения тройки пространств $V=H=H^*$. В последних двух случаях доказывается также единственность решения. В первом случае применяется теорема Шаудера, в остальных — технология продолжения решения по времени (то есть продолжения вдоль вольтерровой цепочки). Приводятся конкретные примеры задания оператора $A$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref