Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье изучается существование положительных решений на отрезке $[0,1]$ двухточечной краевой задачи для одного нелинейного функционально-дифференциального уравнения третьего порядка с интегральным граничным условием на одном из концов отрезка. С помощью теоремы Го–Красносельского о неподвижной точке, с использованием некоторых свойств функции Грина соответствующего дифференциального оператора, получены достаточные условия существования по меньшей мере одного положительного решения рассматриваемой задачи. Приведен пример, иллюстрирующий полученные результаты.
-
В настоящей работе проведено исследование модели деформаций системы из $n$ стилтьесовских струн, расположенных вдоль геометрического графа-звезды, с нелинейным условием в узле. Соответствующая граничная задача имеет вид $$ \left\{\begin{array}{lll} -\left(p_iu_i^\prime\right)(x)+\displaystyle{\int_{0}^{x}}u_i\,dQ_i=F_i(x)-F_i(+0)-(p_iu_i')(+0),\quad i=1,2, \ldots, n,\\ \sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0),\\ u_1(0)=u_2(0)=\ldots=u_n(0)=u(0),\\ (p_iu_i')(l_i-0)+u_i(l_i)\Delta Q_i(l_i)=\Delta F_i(l_i),\quad i=1,2,\ldots, n. \end{array} \right. $$ Здесь функции $u_i(x)$ определяют деформации каждой из струн; $F_i(x)$ описывают распределение внешней нагрузки; $p_i(x)$ характеризуют упругость струн; $Q_i(x)$ описывают упругую реакцию внешней среды. Скачок $\Delta F_i(l_i)$ равняется сосредоточенной в точке $l_i$ внешней силе; скачок $\Delta Q_i(l_i)$ совпадает с жесткостью упругой опоры (пружины), прикрепленной к точке $l_i$. Условие $\sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0)$ возникает за счет наличия в узле ограничителя, представленного отрезком $[-m,m]$, на перемещение струн под воздействием внешней нагрузки, то есть предполагается, что $|u(0)|\leq m$. Здесь через $N_{[-m,m]}u(0)$ обозначен нормальный конус к $[-m,m]$ в точке $u(0)$. В работе проведен вариационный вывод модели; доказаны теоремы существования и единственности решения; проанализированы критические нагрузки, при которых происходит соприкосновение струн с ограничителем; приведена явная формула представления решения.
-
Граничные условия и тепловое сопротивление на межфазной поверхности затвердевающей жидкости, с. 194-206Для затвердевающего чистого расплава получены граничные условия на межфазной поверхности, рассматриваемой в рамках модели Гиббса. Они включают переменные каждой фазы, взятые на границе раздела, а также величины, характеризующие межфазную поверхность, такие как поверхностная температура и поверхностный тепловой поток. Введение поверхностной температуры, как независимой переменной, позволяет описать рассеяние энергии на межфазной поверхности. Для случая стационарного движения плоского фронта получено выражение для межфазного температурного разрыва. Рассмотрено влияние теплового сопротивления Капицы на скорость фронта. Показано, что учет теплового сопротивления приводит к нелинейному поведению скорости кристаллизации от переохлаждения. Найдены условия стационарного движения фронта.
-
В статье предложена численная методика, основанная на методе конечных разностей, для приближенного решения нелокальной краевой задачи второго порядка для обыкновенных дифференциальных уравнений. Ясно, что мост, построенный с двумя опорными точками в каждой конечной точке, приводит к стандартному двухточечному локальному граничному условию, а мост, созданный с помощью многоточечных опор, соответствует многоточечному граничному условию. В то же время, если нелокальные граничные условия могут быть установлены вблизи каждой конечной точки многоточечного опорного моста, возникает двухточечное нелокальное граничное условие. Результаты расчетов для нелинейной модельной задачи представлены для проверки предложенной идеи. Проанализировано влияние изменения параметров на сходимость предложенного метода.
-
В работе рассматривается дифференциальное уравнение типа Эмдена-Фаулера второго порядка с отрицательными потенциалом $y'' - p(x, y, y') |y|^k \text{ sgn } y=0$ в случае регулярной нелинейности $k>1$. Предполагается, что функция $p(x, u, v)$ положительна, непрерывна по $x$ и удовлетворяет условию Липшица по последним двум аргументам. Исследуется асимптотическое поведение максимально продолженных решений рассматриваемого уравнения. Изучается случай неограниченной сверху и отделенной от нуля снизу функции $p(x, u, v)$. Получены условия существования вертикальной асимптоты у всех нетривиальных максимально продолженных решений уравнения. Кроме того, получены достаточные условия, при которых все нетривиальные максимально продолженные решения уравнения обладают свойством $\displaystyle \lim_{x \to a} |y'(x)| = +\infty$, $\displaystyle \lim_{x \to a} |y(x)| < + \infty$, где $a$ - граничная точка области определения.
-
Рассматривается математическая модель о равновесии упругой пластины с двумя взаимно пересекающимися трещинами. Одна из трещин описывается частью плоскости, перпендикулярной срединной плоскости пластины, а другая — задается гладкой кривой в срединной плоскости. Нелинейность задачи обусловлена условиями непроникания в виде неравенств, заданных на кривых, соответствующих трещинам. Проводится анализ зависимости решений семейства вариационных неравенств от параметра, характеризующего вариацию длины прямолинейной трещины. На основе описанного семейства задач формулируется задача оптимального управления с функционалом качества, определенным с помощью формулы Гриффитса, которая характеризует возможность развития трещины вдоль заданной траектории. При этом управление задается числовым параметром, отвечающим за длину прямолинейной трещины. Доказано существование решения для задачи оптимального управления, установлена непрерывная зависимость решений в пространстве Соболева от изменения параметра длины трещины.
-
В статье рассматривается модельная задача несжимаемого течения жидкости и переноса тепла в коротком плоском канале с обратным уступом. Цель работы состоит в исследовании влияния граничного условия для потока тепла (температуры) на выходе из канала на характеристики теплопереноса внутри канала. Система уравнений Навье-Стокса и баланса тепла решаются численно с использованием равномерной сетки разрешением $6001\times301$ узлов. Для разностной аппроксимации пространственных производных используется метод контрольного объема второго порядка. Достоверность получаемых решений подтверждена для широкого диапазона числа Рейнольдса $(100 \leqslant \text{Re} \leqslant 1000)$ и числа Прандтля $\text{Pr} = 0.71$ путем сравнения с экспериментальными и теоретическими результатами, найденными в литературе. Анализируются картины течения, поля изотерм перегрева потока и поведение локального числа Нуссельта вдоль нагретой нижней стенки канала в зависимости от выбора выходного граничного условия для потока тепла (температуры). Показано, что этот выбор может оказать существенное влияние на характер прогрева течения внутри всего канала. По результатам исследования выбор сделан в пользу нелинейного граничного условия.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.