Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'мера':
Найдено статей: 44
  1. Рассматривается игровая задача на максимин функции платы, определенной на произведении множеств притяжения терминальных состояний систем первого и второго игрока. Данные множества притяжения найдены с помощью конструкций расширения в классе конечно-аддитивных мер.

  2. Пусть $T\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, — гомеоморфизм окружности с одной точкой излома $x_{b}$, в которой $T'(x)$ имеет разрыв первого рода и обе односторонние производные в точке $x_{b}$ строго положительные, и иррациональным числом вращения $\rho _{T}$. Предположим, что разложение числа вращения $\rho _{T}$ в непрерывную дробь, начиная с некоторого номера, совпадает с золотым сечением, т.е. $\rho _{T}=[m_{1},m_{2},\dots,m_{l},\,m_{l+1},\ldots],…,m_{s}=1$, $s> l>0$. Поскольку число вращения иррациональное, отображение $T$ является строго эргодическим, т.е. обладает единственной вероятностной инвариантной мерой $\mu_{T}$. В работе А.А. Джалилова и К.М. Ханина доказано, что вероятностная инвариантная мера $\mu_{G}$ любого гомеоморфизма окружности $G\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одной точкой излома $ x_{b}$ и иррациональным числом вращения $\rho _{G}$ является сингулярной относительно меры Лебега $\lambda$ на окружности, т.е. существует измеримое подмножество $A \subset S^{1}$ такое, что $\mu_{G}(A)=1$ и $\lambda(A)=0$. Мы построим термодинамический формализм для гомеоморфизмов $T_{b}\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одним изломом в точке $x_{b}$ и числом вращения, равным золотому сечению, т.е. $\rho _{T}:=\frac{\sqrt{5}-1}{2}$. Существенно используя построенный термодинамический формализм, мы изучили показатели сингулярности инвариантной меры $\mu_{T}$ гомеоморфизма $T$.

  3. Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.

  4. Абдуллаев Б.И., Имомкулов С.А., Шарипов Р.А.
    Структура особых множеств некоторых классов субгармонических функций, с. 519-535

    В данной работе дается обзор результатов об устранимых особых множествах для классов $m$-субгармонических ($m-sh$) и сильно $m$-субгармонических ($sh_m$), а также $\alpha$-субгармонических функций, которые применяются для изучения особых множеств $sh_{m}$ функций. Для сильно $m$-субгармонических функций из класса $L_{loc}^{p}$, доказывается, что множество является устранимым особым множеством, если имеет нулевую $C_{q,s}$-емкость. Доказательство этого утверждения основано на том, что пространство основных функций, с носителем на множестве $D\backslash E$, плотно по $L_{q}^{s}$-норме в пространстве основных функций, определенных на множестве $D$. Аналогичные результаты в случае классических (суб)гармонических функций были изучены в работах Л. Карлесона, Е. Долженко, М. Бланшет, С. Гардинера, Ж. Риихентаус, В. Шапиро, А. Садуллаева и Ж. Ярметова, Б. Абдуллаева и С. Имомкулова.

  5. Абдуллаев Б.И., Камолов Х.К.
    Теория потенциала на аналитической поверхности, с. 3-16

    Работа посвящена теории плюрипотенциала на аналитических поверхностях. Теория плюрипотенциала в комплексном пространстве ${\mathbb C}^{n}$, а также на штейновом комплексном многообразии $X\subset{\mathbb C}^{N}$ (без особого множества) изучена достаточно подробно. В этой работе мы предлагаем новую технологию для изучения основных объектов теории потенциала на аналитическом множестве с непустым особым (критическим) множеством.

  6. Пусть $T_{\rho}$ — иррациональный поворот на единичной окружности $S^{1}\simeq [0,1)$. Рассмотрим последовательность $\{\mathcal{P}_{n}\}$ возрастающих разбиений на $S^{1}$. Определим время попадания $N_{n}(\mathcal{P}_n;x,y):= \inf \{ j\geq 1\mid T^{j}_{\rho}(y) \in P_{n}(x)\}$, где $P_{n}(x)$ — элемент разбиения $\mathcal{P}_{n}$, содержащий точку $x$. Д. Ким и Б. Сео [9] доказали, что время попадания $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ почти всюду (по мере Лебега) сходится к $\log2$, где последовательность разбиений $\{\mathcal{Q}_n\}$ порождена хаотическим отображением $f_{2}(x):=2x \bmod 1$. Хорошо известно, что отображение $f_{2}$ имеет положительную энтропию $\log2$. Возникает естественный вопрос о том, что если последовательность разбиений $\{\mathcal{P}_n\}$ порождена отображением с нулевой энтропией. В настоящей работе мы изучаем поведение $K_n(\tau_n;x,y)$ с последовательностью смешанных разбиений ${\tau_{n}}$ таких, что $\mathcal{Q}_{n}\cap [0,\frac{1}{2}]$ порождена отображением $f_{2}$, а $ \mathcal{D}_{n}\cap [\frac{1}{2},1]$ порождена иррациональным поворотом $T_{\rho}$. Доказано, что $K_n(\tau_n;x,y)$ почти всюду (по мере Лебега) сходится к кусочно-постоянной функции с двумя значениями. Также показано, что существуют некоторые иррациональные повороты, демонстрирующие различное поведение.

  7. В статье изучается существование положительных решений на отрезке $[0,1]$ двухточечной краевой задачи для одного нелинейного функционально-дифференциального уравнения третьего порядка с интегральным граничным условием на одном из концов отрезка. С помощью теоремы Го–Красносельского о неподвижной точке, с использованием некоторых свойств функции Грина соответствующего дифференциального оператора, получены достаточные условия существования по меньшей мере одного положительного решения рассматриваемой задачи. Приведен пример, иллюстрирующий полученные результаты.

  8. В работе рассматривается задача оптимального управления одномерным процессом, заданным стохастическим дифференциальным уравнением, в котором управление воздействует как на коэффициент сноса, так и на коэффициент диффузии, при этом диффузионная составляющая линейна по управлению $$dx(t) = b(t,x(t),u(t))dt +\sigma(t,x(t))u(t)dW(t),\qquad x(0) = x_0.$$ Здесь $x(t)$ - фазовая координата, $u(t)$ - управляющая функция, $W(t)$ - винеровский процесс. Доказана теорема, которая предоставляет структуру решения рассматриваемого уравнения в виде суперпозиции функций $x(t)=Φ(t,u(t)W(t)+y(t))$, в котором $Φ(t,v)$ - известная функция, полностью определяющаяся коэффициентом $σ(t,x)$, и не зависит от управления, а $y(t)$ - решение потраекторно-детерминированного дифференциального уравнения с мерой вида

    $$dy(t) = B(t,y(t),u(t))dt - W(t)du(t).$$

    Выявленная структура решения позволяет вместо исходной стохастической задачи оптимального управления исследовать новую эквивалентную задачу с фазовой переменной $y(t)$, которая является потраекторно-детерминированной задачей оптимального импульсного управления. При детерминированном рассмотрении новой задачи решения последней могут оказаться упреждающими функциями, поэтому в работе предлагается метод, который позволяет добиться неупреждаемости оптимальных решений. Суть метода заключается в модификации функционала потерь в новой потраекторно-детерминированной задаче специальным образом подобранным интегральным слагаемым, которое позволяет гарантировать неупреждаемость решений.

  9. Казарников А.В., Ревина С.В.
    Бифуркации в системе Рэлея с диффузией, с. 499-514

    Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.

  10. Хорошо известно, что преобразование ренормгруппы $\mathcal{R}$ имеет единственную неподвижную точку $f_ {cr}$ в пространстве критических $C^{3}$-гомеоморфизмов окружности с одной кубической критической точкой $x_{cr}$ и числом вращения равным золотому сечению $\overline{\rho}: =\frac{\sqrt{5} -1}{2}.$ Обозначим через $Cr(\overline{\rho})$ множество всех критических отображений окружности $C^ {1}$-сопряженных к $f_{cr}.$ Пусть $f\in Cr(\overline{\rho})$ и $\mu:=\mu_{f}$ --- единственная вероятностная инвариантная мера для $f.$ Зафиксируем $\theta \in (0,1).$ Для каждого $n\geq 1$ определим $c_{n}:=c_{n}(\theta)$ такое, что $\mu([x_{cr}, c_{n}]) = \theta\cdot\mu([x_{cr}, f^{q_{n}} (x_{cr})]),$ где $q_{n}$ --- время первого возврата линейного вращения $f_{\overline{\rho}}.$ Мы исследуем закон сходимости перемасштабированного точечного процесса времени попадания. Мы показываем, что предельное распределение сингулярно относительно меры Лебега.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref