Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Бифуркационное исследование перехода к хаосу в колебательной системе движения пластинки в жидкости, с. 3-18Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.
-
Изучается многомерный случай нелинейной системы реакции-диффузии, моделируемый системой двух уравнений параболического типа со степенными нелинейностями. Такого рода системы можно применять для моделирования процесса распространения в пространстве взаимодействующих распределенных формаций роботов двух типов. Такие уравнения описывают также процессы нелинейной диффузии в реагирующих двухкомпонентных сплошных средах. Предложен оригинальный вариант метода редукции, сводящий построение зависимости точного решения от пространственных переменных к решению уравнения Гельмгольца, а зависимости от времени — к решению линейной системы обыкновенных дифференциальных уравнений. Построен ряд примеров многопараметрических семейств точных решений, задаваемых элементарными функциями.
-
О многомерных точных решениях уравнения нелинейной диффузии типа пантографа с переменным запаздыванием, с. 359-374Рассматривается многомерное уравнение нелинейной диффузии типа пантографа с линейно растущим запаздыванием по времени и масштабированием по пространственным переменным в источнике (стоке). Предложено строить точные решения методом редукции с использованием двух анзацев с квадратичной зависимостью от пространственных переменных. Зависимость решения от пространственных переменных находится из системы алгебраических уравнений, а зависимость от времени находится из системы обыкновенных дифференциальных уравнений с линейно растущим запаздыванием аргумента. Приводится ряд примеров точных решений, как радиально симметричных, так и анизотропных по пространственным переменным.
-
В статье предложена численная методика, основанная на методе конечных разностей, для приближенного решения нелокальной краевой задачи второго порядка для обыкновенных дифференциальных уравнений. Ясно, что мост, построенный с двумя опорными точками в каждой конечной точке, приводит к стандартному двухточечному локальному граничному условию, а мост, созданный с помощью многоточечных опор, соответствует многоточечному граничному условию. В то же время, если нелокальные граничные условия могут быть установлены вблизи каждой конечной точки многоточечного опорного моста, возникает двухточечное нелокальное граничное условие. Результаты расчетов для нелинейной модельной задачи представлены для проверки предложенной идеи. Проанализировано влияние изменения параметров на сходимость предложенного метода.
-
Псевдоспектральный метод для автономных нелинейных дифференциальных уравнений второго порядка, с. 61-72Автономные нелинейные дифференциальные уравнения представляют собой систему обыкновенных дифференциальных уравнений, которые часто применяются в различных областях механики, квантовой физики, химического машиностроения, физики и прикладной математики. Здесь рассматриваются автономные нелинейные дифференциальные уравнения второго порядка ${u}''({x}) - {u}'({x}) = {f}[{u}({x})]$ и ${u}''({x}) + {f}[{u}({x})]{u}'({x}) + {u}({x}) = 0$ на промежутке $[-1, 1]$ с заданными граничными значениями ${u}[-1]$ и ${u}[1]$. Для решения этих задач используется псевдоспектральный метод, основанный на матрице дифференцирования Чебышева с точками Чебышева-Гаусса-Лобатто. Для нахождения приближенных решений построены две новые итерационные процедуры. В этой статье был использован язык программирования Mathematica версии 10.4 для представления алгоритмов, численных результатов и рисунков. В качестве примера численного моделирования исследовано известное уравнение Ван дер Поля и получены хорошие результаты. Впоследствии возможно применение полученных результатов к другим нелинейным системам, таким как уравнения Рэлея, уравнения Льенара и уравнения Эмдена-Фаулера.
-
Рассматривается задача оптимизации гарантированного результата для управляемой системы, описываемой обыкновенным дифференциальным уравнением, и функционала качества, непрерывно зависящего от траектории движения системы. Значения управления и помехи ограничены в каждый момент компактными множествами. Предполагается, что помеха порождается некоторой неизвестной заранее функцией типа Каратеодори, то есть функцией непрерывной по пространственной переменной при каждом значении временной переменной и измеримой по временной переменной при каждом значении пространственной. Оптимальное управление ищется в классе стратегий управления с полной памятью о движении системы и о реализовавшемся управлении.
Показано, что для достаточно широкого семейства управляемых систем оптимальный гарантированный результат в классе стратегий с полной памятью совпадает с оптимальным гарантированным результатом в классе квазистратегий. Для этого семейства управляемых систем построена разрешающая стратегия, допускающая численную реализацию. Приводится иллюстрирующий пример для нелинейной управляемой системы.
-
Стохастические дифференциальные системы со случайными запаздываниями в форме дискретных цепей Маркова, с. 501-516В работе дан обзор проблем, приводящих к необходимости анализа моделей линейных и нелинейных динамических систем в форме стохастических дифференциальных уравнений со случайными запаздываниями различного типа, а также представлены некоторые известные методы решения этих задач. Далее в статье предлагаются новые подходы к приближенному анализу линейных и нелинейных стохастических динамических систем, изменения запаздываний которых описываются дискретной марковской цепью с непрерывным временем. Используемые подходы базируются на сочетании классического метода шагов, расширения пространства состояния стохастической системы и метода статистического моделирования (Монте-Карло). В рассматриваемом случае такой подход позволил упростить задачу и привести исходные уравнения к системам стохастических дифференциальных уравнений без запаздывания. Более того, для линейных систем получена замкнутая последовательность систем обыкновенных дифференциальных уравнений увеличивающейся размерности относительно функций условных математических ожиданий и ковариаций вектора состояния. Изложенная схема демонстрируется на примере стохастической системы второго порядка, изменения запаздывания которой описываются марковской цепью с пятью состояниями. Все расчеты и построение графиков проводились в среде математического пакета Mathematica с помощью программы, написанной на входном языке этого пакета.
-
В работе рассматриваются нелинейные дифференциальные уравнения $n$-го порядка с младшей производной. При помощи принципа сжимающих отображений исследуется асимптотическая эквивалентность решений этих уравнений в случае экспоненциальной эквивалентности их правых частей. Полученные достаточные условия асимптотической эквивалентности решений являются продолжением и обобщением результатов, изложенных в предыдущих работах автора. Приводится результат, описывающий асимптотическое поведение всех стремящихся к нулю на бесконечности решений дифференциального уравнения второго порядка с регулярной нелинейностью типа Эмдена-Фаулера и нулевой правой частью, возникающего при исследовании квазилинейных эллиптических уравнений. На его основе описывается асимптотическое поведение решений соответствующего уравнения с ненулевой правой частью.
-
Рассматривается нелинейное эволюционное операторное уравнение второго рода $\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$, $\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$, в произвольном банаховом пространстве $X$, с эволюционными (вольтерровыми) операторами $\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$, $f[u]\colon W[0;T]\to L_p\bigl([0;T];Y\bigr)$ общего вида, $Y$ - произвольное банахово пространство, $u\in\mathcal{D}$ - управляющий параметр. Для указанного уравнения доказываются теорема единственности решения, а также теорема о достаточных условиях тотально (по множеству допустимых управлений) глобальной разрешимости при варьировании управления. При некоторых естественных предположениях, связанных с поточечными по времени $t$ оценками, заключение об однозначной тотально глобальной разрешимости делается, исходя из факта глобальной разрешимости системы сравнения, в качестве которой выступает система функционально-интегральных неравенств (можно заменить ее системой уравнений аналогичного типа, а в некоторых случаях - системой обыкновенных дифференциальных уравнений) относительно функций одного переменного $t\in[0;T]$ со значениями в пространстве $\mathbb{R}$. В качестве примера устанавливаются условия однозначной тотально глобальной разрешимости управляемой нелинейной нестационарной системы уравнений Навье-Стокса.
-
Пусть $H$ — банахово пространство, $T>0$, $\sigma\in[1;\infty]$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T)$, индуцированная сужениями из пространства $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ — вольтерров оператор; $f[u]\colon W\to L_\sigma(0,T;H)$ — управляемый вольтерров оператор, зависящий от управления $u\in U$. Рассматривается уравнение вида $$ x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W. $$ Для этого уравнения устанавливаются признаки тотально (по множеству допустимых управлений) глобальной разрешимости при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее, на этот раз при других, более удобных для практического использования условиях (хотя и в более частной постановке). Отдельно рассматриваются случаи: 1) компактного вложения пространств и непрерывности операторов $\mathcal{F}$, $f[u]$ (такой подход автором ранее не использовался); 2) выполнения локально-интегрального аналога условия Липшица относительно указанных операторов. Во втором случае доказывается также единственность решения. В первом случае применяется теорема Шаудера, во втором — технология продолжения решения по времени, то есть продолжения вдоль вольтерровой цепочки. В качестве примера рассматривается нелинейное волновое уравнение в пространстве $\mathbb{R}^n$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.