Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'обобщенные функции Коломбо':
Найдено статей: 2
  1. Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.

  2. Рассматривается уравнение
    $$Lx\doteq x''+P(t)x'+Q(t)x=0,\quad t\in[a, b]\subset \mathcal{I}\doteq(\alpha,\beta)\subset\mathbb{R}, \qquad (1)$$где $P$, $Q$ - $C$-обобщенные функции, определенные на $ \mathcal I$ и представляющие собой смежные классы фактор-алгебры Коломбо. Пусть $ \mathcal{R}_P$, $ \mathcal{R}_Q$ - представители этих классов соответственно, $\mathcal{A}_N$ - классы финитных функций, необходимые для определения алгебры Коломбо. Получены новые достаточные условия неосцилляции уравнения $(1)$: доказано, что если выполнено условие $$(\exists\, N\in\mathbb{N}) (\forall\, \varphi\in \mathcal{A}_N) (\exists\, \mu_0<1) \; \int_a^b| \mathcal{R}_P(\varphi_\mu,t)|\,dt+\int_a^b| \mathcal{R}_Q(\varphi_\mu,t)|\,dt<\\<\frac{4}{b-a+4}\quad (0<\mu<\mu_0),$$где $\varphi_{\mu}\doteq \frac{1}{\mu}\varphi\left(\frac{t}{\mu}\right)$, то уравнение $(1)$ неосцилляционно на $[a, b]$. Доказана теорема о разделении нулей и следствие, вытекающее из нее.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref