Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
На примере системы второго порядка показан вариант обобщения понятия неосциляции решений скалярных разностных уравнений. Приведен критерий неосцилляции, основанный на пробных функциях.
-
Излагаются основы теории неосцилляции решений обыкновенного линейного однородного дифференциального уравнения n-го порядка с новыми доказательствами некоторых основных теорем: признаки неосцилляции, ее следствия, свойства неосцилляционных уравнений. Для уравнения второго порядка приводятся новые достаточные признаки неосцилляции.
-
Пусть Q есть дифференциальный оператор порядка m − 1, 2 ≤ m ≤ n, для которого (a, b) будет промежутком неосцилляции, причём оператор Грина G : L[a, b] → Wn[a, b] краевой задачи Lx = f, li(x) = 0, i = 1, . . . , n обладает свойством обобщённой выпуклости: QGP > 0 для некоторого линейного гомеоморфизма P лебегова пространства L[a, b]. Найдены условия, при которых возмущённая краевая задача Lx = PVQx+f, li(x) = 0, i = 1, . . . , n также однозначно разрешима в соболевском пространстве Wn[a, b] и её оператор Грина Ĝ наследует свойство G, а именно QĜP > 0.
-
Рассматривается уравнение
$$Lx\doteq x''+P(t)x'+Q(t)x=0,\quad t\in[a, b]\subset \mathcal{I}\doteq(\alpha,\beta)\subset\mathbb{R}, \qquad (1)$$где $P$, $Q$ - $C$-обобщенные функции, определенные на $ \mathcal I$ и представляющие собой смежные классы фактор-алгебры Коломбо. Пусть $ \mathcal{R}_P$, $ \mathcal{R}_Q$ - представители этих классов соответственно, $\mathcal{A}_N$ - классы финитных функций, необходимые для определения алгебры Коломбо. Получены новые достаточные условия неосцилляции уравнения $(1)$: доказано, что если выполнено условие $$(\exists\, N\in\mathbb{N}) (\forall\, \varphi\in \mathcal{A}_N) (\exists\, \mu_0<1) \; \int_a^b| \mathcal{R}_P(\varphi_\mu,t)|\,dt+\int_a^b| \mathcal{R}_Q(\varphi_\mu,t)|\,dt<\\<\frac{4}{b-a+4}\quad (0<\mu<\mu_0),$$где $\varphi_{\mu}\doteq \frac{1}{\mu}\varphi\left(\frac{t}{\mu}\right)$, то уравнение $(1)$ неосцилляционно на $[a, b]$. Доказана теорема о разделении нулей и следствие, вытекающее из нее.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.