Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'неосцилляция':
Найдено статей: 4
  1. На примере системы второго порядка показан вариант обобщения понятия неосциляции решений скалярных разностных уравнений. Приведен критерий неосцилляции, основанный на пробных функциях.

  2. Излагаются основы теории неосцилляции решений обыкновенного линейного однородного дифференциального уравнения n-го порядка с новыми доказательствами некоторых основных теорем: признаки неосцилляции, ее следствия, свойства неосцилляционных уравнений. Для уравнения второго порядка приводятся новые достаточные признаки неосцилляции.

  3. Пусть Q есть дифференциальный оператор порядка m − 1, 2 ≤ m ≤ n, для которого (a, b) будет промежутком неосцилляции, причём оператор Грина G : L[a, b] → Wn[a, b] краевой задачи Lx = f, li(x) = 0, i = 1, . . . , n обладает свойством обобщённой выпуклости: QGP > 0 для некоторого линейного гомеоморфизма P лебегова пространства L[a, b]. Найдены условия, при которых возмущённая краевая задача Lx = PVQx+f, li(x) = 0, i = 1, . . . , n также однозначно разрешима в соболевском пространстве Wn[a, b] и её оператор Грина Ĝ наследует свойство G, а именно QĜP > 0.

  4. Рассматривается уравнение
    $$Lx\doteq x''+P(t)x'+Q(t)x=0,\quad t\in[a, b]\subset \mathcal{I}\doteq(\alpha,\beta)\subset\mathbb{R}, \qquad (1)$$где $P$, $Q$ - $C$-обобщенные функции, определенные на $ \mathcal I$ и представляющие собой смежные классы фактор-алгебры Коломбо. Пусть $ \mathcal{R}_P$, $ \mathcal{R}_Q$ - представители этих классов соответственно, $\mathcal{A}_N$ - классы финитных функций, необходимые для определения алгебры Коломбо. Получены новые достаточные условия неосцилляции уравнения $(1)$: доказано, что если выполнено условие $$(\exists\, N\in\mathbb{N}) (\forall\, \varphi\in \mathcal{A}_N) (\exists\, \mu_0<1) \; \int_a^b| \mathcal{R}_P(\varphi_\mu,t)|\,dt+\int_a^b| \mathcal{R}_Q(\varphi_\mu,t)|\,dt<\\<\frac{4}{b-a+4}\quad (0<\mu<\mu_0),$$где $\varphi_{\mu}\doteq \frac{1}{\mu}\varphi\left(\frac{t}{\mu}\right)$, то уравнение $(1)$ неосцилляционно на $[a, b]$. Доказана теорема о разделении нулей и следствие, вытекающее из нее.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref