Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'оптимальная динамика':
Найдено статей: 7
  1. Рассматривается задача оптимального управления системой бесконечного числа однотипных агентов. Пространство допустимых для агентов состояний является конечным. В рассматриваемой постановке имеется общий для всех агентов оптимизируемый функционал и общий центр управления, выбирающий стратегию для агентов. Предполагается, что выбираемая стратегия является позиционной. В настоящей работе рассматривается случай, когда динамика состояний агентов задается некоторой марковской цепью с непрерывным временем. Предполагается, что матрица Колмогорова этой цепи в каждом состоянии зависит от текущего состояния, выбранного управления и распределения всех агентов. Для такой задачи в работе показано, что решение в классе позиционных стратегий может быть построено на основе решения детерминированной задачи оптимального управления в конечномерном фазовом пространстве.

  2. В конечномерном нормированном пространстве рассматривается дискретная игровая задача фиксированной продолжительности. Терминальное множество определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. В данной работе построены оптимальные управления игроков. Проведено компьютерное моделирование игрового процесса. Рассмотрена модификация исходной задачи, в которой у первого игрока в неизвестный момент времени происходит изменение в динамике.

  3. В работе рассматриваются динамические биматричные игры с интегральными показателями, дисконтированными на бесконечном интервале времени. Динамика системы задается дифференциальными уравнениями, описывающими изменение поведения игроков в зависимости от поступающих сигналов управления. Рассматривается задача построения равновесных траекторий в рамках минимаксного подхода, предложенного Н.Н. Красовским и А.И. Субботиным в теории дифференциальных игр. Используется конструкция динамического равновесия по Нэшу, которая развита в работах А.Ф. Клейменова. Для синтеза оптимальных стратегий управления применяется принцип максимума Л.С. Понтрягина в сочетании с методом характеристик для уравнений Гамильтона-Якоби. Получены аналитические формулы для кривых переключения оптимальных стратегий управления. Проведен анализ чувствительности равновесных решений в зависимости от параметра дисконтирования в интегральных функционалах выигрыша. Установлена асимптотическая сходимость равновесных траекторий по параметру дисконтирования к решению динамической биматричной игры со среднеинтегральными функционалами выигрыша, которые исследовались в работах В.И. Арнольда. Рассмотрено приложение полученных результатов к динамической модели инвестирования на финансовых рынках.

  4. Рассматриваются некоторые задачи теории оптимального фуражирования, а именно, задачи выбора популяцией хищника участка, пригодного для питания, и нахождения условий ухода из него. Динамика взаимодействия хищника и жертвы задается системой Лотки-Вольтерры, в которой учтена внутривидовая конкуренция особей жертвы и возможность миграции особей хищника и жертвы. В процессах взаимодействия и миграции участвуют некоторые доли популяций. Решается задача нахождения оптимальных с точки зрения равновесия по Нэшу долей. При этом получено разбиение фазового пространства системы на области с различным поведением популяций. Исследуются оптимальные траектории соответствующей динамической системы с переменной структурой, их поведение на границах разбиения фазового пространства. Найдены положения равновесия и доказана их глобальная устойчивость при определенных ограничениях на параметры системы. В одном из случаев взаимоотношения между параметрами исследование качественного поведения оптимальных траекторий приводит к задаче о существовании предельных циклов. При этом дана оценка соответствующей области притяжения равновесия.

  5. Рассматривается модель эксплуатируемой однородной популяции, заданная разностным уравнением, зависящим от случайных параметров. При отсутствии эксплуатации развитие популяции описывается уравнением $$X(k+1)=f\bigl(X(k)\bigr), \quad k=1,2,\ldots,$$ где $X(k)$ — размер популяции или количество биоресурса в момент времени $k,$ $f(x)$ — вещественная дифференцируемая функция, заданная на отрезке $I=[0,a],$ такая, что $f(I)\subseteq I.$ В моменты времени $k=1,2,\ldots$ из популяции извлекается случайная доля ресурса $\omega(k)\in\Omega\subseteq[0,1]$. Процесс сбора может быть остановлен, когда доля собранного ресурса превысит некоторое значение $u(k)\in[0,1)$, чтобы сохранить по возможности большую часть популяции. Тогда доля добываемого ресурса будет равна $\ell(k)=\min (\omega(k),u(k)).$ Средняя временная выгода $H_*$ от извлечения ресурса равна пределу среднего арифметического от количества добываемого ресурса $X(k)\ell(k)$ в моменты времени $1,2,\ldots,k$ при $k\to\infty.$ Решается задача выбора управления процессом промыслового изъятия, при котором значение $H_*$ можно оценить снизу с вероятностью единица по возможности наибольшим числом. Оценки средней временной выгоды существенно зависят от свойств функции $f(x),$ определяющей динамику популяции; данные оценки получены для трех классов уравнений с функциями $f(x),$ обладающими определенными свойствами. Результаты работы проиллюстрированы численными примерами, построенными методом динамического программирования на основании того, что исследуемый процесс эксплуатации популяции является марковским процессом принятия решений.

  6. В работе найдено семейство периодических в абсолютном пространстве решений (хореографий) в классической задаче о движении тяжелого твердого тела с неподвижной точкой на нулевой константе площадей. Данное семейство включает в себя известные решения Делоне (для случая Ковалевской), частные решения для случая Горячева-Чаплыгина, а также решения Стеклова.
    Показано, что при ненулевом значении интеграла площадей соответствующие решения являются периодическими в равномерно вращающейся вокруг вертикали системе координат (относительными хореографиями).

  7. Предложены аналитические и численные алгоритмы построения функции оптимального результата и ее множеств Лебега для задачи управления по быстродействию с круговой индикатрисой скоростей. Выделены и изучены многообразия, на которых функция оптимального результата теряет гладкость.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref