Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В данной работе исследуется качение сферического волчка с осесимметричным распределением масс по гладкой горизонтальной плоскости, совершающей периодические вертикальные колебания. Для рассматриваемой системы получены уравнения движения и законы сохранения. Показано, что система допускает два положения равновесия, соответствующих равномерным вращениям волчка относительно вертикально расположенной оси симметрии. Положение равновесия устойчиво, когда центр масс расположен ниже геометрического центра и неустойчиво, если центр масс расположен выше него. Проведена редукция уравнений движения к системе с полутора степенями свободы. Рассматриваемая редуцированная система представлена в виде малого возмущения задачи о движении волчка Лагранжа. При помощи метода Мельникова показано, что устойчивая и неустойчивая ветви сепаратрисы трансверсально пересекаются между собой, что говорит о неинтегрируемости рассматриваемой задачи. Приведены результаты компьютерного моделирования динамики волчка вблизи неустойчивого положения равновесия.
-
Данная статья посвящена изучению структуры топологических левых (или правых) квазигрупп, которые играют большую роль в некоммутативной геометрии. Факторные и трансверсальные отображения важны в теории дифференцируемых многообразий, а также топологических многообразий. Исследуются факторные и трансверсальные отображения для топологических квазигрупп, выясняются необходимые и достаточные условия их непрерывности. Приводятся примеры топологических левых квазигрупп и луп. Изучаются однородные пространства, ассоциированные с квазигруппами и их подквазигруппами. С этой целью исследуется произведения топологических левых (или правых) квазигрупп специального вида, которые называются сокрушающими. С их помощью описывается обширное семейство топологических недискретных левых (или правых) квазигрупп, для которых трансверсальное отображение непрерывно.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.