Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'непрерывность':
Найдено статей: 104
  1. Для дифференциальной игры многих лиц найдены условия того, что заданное многозначное отображение в каждой точке есть множество выигрышей в ситуациях равновесия по Нэшу. Данное условие выписано в инфинитезимальной форме. Также найдены достаточные условия, при которых набор непрерывных функций обеспечивает равновесие по Нэшу. Данное условие обобщает метод, основанный на системе уравнений типа Гамильтона–Якоби.

  2. Рассматривается вопрос о существовании рекуррентных и почти рекуррентных сечений многозначных отображений R ∋ tF(t) ∈ compU с непустыми компактными образами F(t) в полном метрическом пространстве U. На множестве compU вводится метрика Хаусдорфа dist. Рекуррентные и почти рекуррентные многозначные отображения определяются как функции со значениями в метрическом пространстве (compU, dist). Доказано существование рекуррентных (почти рекуррентных) сечений многозначных рекуррентных (соответственно, почти рекуррентных) равномерно абсолютно непрерывных отображений. Рассматриваются также отображения R ∋ t → F(t), образы которых состоят из конечного числа точек (зависящего от t). Доказано, что если такое отображение почти рекуррентно, то у него существует почти рекуррентное сечение. Многозначное рекуррентное отображение, образы F(t) которого для всех t ∈ R состоят не более чем из n точек (где n ∈ N), имеет рекуррентное сечение. Если образы многозначного рекуррентного (почти рекуррентного) отображения tF(t) при всех t ∈ R состоят из n точек, то все n непрерывных сечений отображения F рекуррентны (почти рекуррентны).

  3. Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.

  4. Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.

  5. Работа посвящена изучению наилучших равномерных рациональных приближений (НРРП) непрерывных функций на компактных, в том числе конечных, подмножествах числовой оси $\mathbb{R}$. Показано, что НРРП на конечном множестве существует не всегда. Более подробно изучен алгоритм Гельмута Вернера поиска НРРП вида $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ для функций на множестве из $N=m+n+2$ точек $x_1<\ldots<x_N$. Этот алгоритм может использоваться в алгоритме Ремеза поиска НРРП на отрезке. При работе алгоритма Вернера вычисляется $(n+1)$ вещественное собственное значение $h_1,\ldots,h_{n+1}$ для пучка матриц $A-hB$, где $A$ и $B$ - некоторые симметричные матрицы. Каждому собственному значению сопоставляется своя рациональная дробь вида $P_m/Q_n$, являющаяся кандидатом на наилучшее приближение. Поскольку не более одной из этих дробей свободны от полюсов на отрезке $[x_1, x_N]$, то возникает задача отыскания того собственного значения, которому соответствует рациональная дробь без полюсов. В работе показано, что если $m=0$, все значения $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ различны и НРРП положительно (отрицательно) во всех точках $x_1,\ldots,x_{n+2}$, то это собственное значение занимает $[(n+2)/2]$-е ($[(n+3)/2]$-е) место по величине. Приведены три численных примера, иллюстрирующих это утверждение.

  6. В статье исследуются свойства функции цены задачи оптимального управления на бесконечном горизонте с неограниченным подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Выводится оценка аппроксимации функции цены в задаче с бесконечным горизонтом значениями функции цены в задачах с удлиняющимся конечным горизонтом. Выявляется структура функции цены через значения стационарной функции цены, зависящей только от фазовой переменной. Дается описание асимптотики роста значений функции цены для функционалов качества различного вида, принятых в экономическом и финансовом моделировании: логарифмических, степенных, экспоненциальных, линейных. Устанавливается свойство непрерывности функции цены и выводятся оценки гёльдеровских параметров непрерывности. Полученные оценки необходимы для разработки сеточных алгоритмов построения функций цены в задачах оптимального управления с бесконечным горизонтом.

  7. Высокос М.И., Жуковский В.И., Кириченко М.М., Самсонов С.П.
    Новый подход к многокритериальным задачам при неопределенности, с. 3-16

    Новизна в том, что лицо, принимающее решение (ЛПР) в многокритериальной задаче при неопределенности, стремится не только по возможности увеличить гарантированные значения каждого из своих критериев, но и одновременно уменьшить гарантированные риски, сопровождающие такое увеличение. Предлагаемое исследование выполнено на стыке теории многокритериальных задач (МЗ) и принципа минимаксного сожаления (риска) (ПМС) Сэвиджа-Ниханса: из теории МЗ использованы понятие слабо эффективной оценки и сопровождающая теорема Ю.Б. Гермейера, а из ПМС - оценка значения функции сожаления в качестве риска по Сэвиджу-Нихансу. Рассмотрение ограничено интервальными неопределенностями: о них ЛПР известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют (по тем или иным причинам). Введено новое понятие - сильно гарантированного по исходам и рискам решения (СГИР), максимального по Слейтеру; установлено его существование при «привычных» для математического программирования ограничениях (непрерывность критериев, компактность множеств стратегий и неопределенностей). В качестве приложения найден явный вид СГИР в задаче диверсификации вклада по рублевому и валютному депозитам.

  8. Работа посвящена исследованию свойства интегральной разделенности линейных систем с дискретным временем. Согласно определению система $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ называется системой с интегральной разделенностью, если она имеет фундаментальную систему решений $x^1(\cdot),\ldots,x^n(\cdot)$ такую, что при некоторых $\gamma>0$, $a>1$ и всех натуральных $m>s$, $i\leqslant n-1$ выполнены неравенства $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ Понятие интегральной разделенности систем с непрерывным временем было введено Б.Ф. Быловым в 1965 году. Доказаны критерии интегральной разделенности систем с дискретным временем: приводимость к диагональному виду с интегрально разделенной диагональю; устойчивость и некратность показателей Ляпунова. Подробно исследовано также свойство диагонализируемости систем с дискретным временем. Доказательства учитывают специфику этих систем.

  9. Исследуются свойства правильных функций, а также ограниченных функций, имеющих не более чем счетное множество точек разрыва (названных $\sigma$-непрерывными). Доказана теорема об интегрируемости по Риману-Стилтьесу $\sigma$-непрерывных функций по непрерывным функциям ограниченной вариации, а также предельная теорема Хелли для таких интегрируемых и интегрирующих функций. Процесс интегрирования по Риману-Стилтьесу расширяется на случай интегрирования $\sigma$-непрерывных функций по произвольным функциям ограниченной вариации: вводится $(*)$-интеграл как сумма классического интеграла Римана-Стилтьеса по непрерывной части функции ограниченной вариации и суммы произведений значений интегрируемой функции на скачки интегрирующей. Таким образом, $(*)$-интеграл позволяет интегрировать разрывные функции по разрывным. Все свойства $(*)$-интеграла выводятся непосредственно из этого определения. Так, для $(*)$-интеграла доказывается формула интегрирования по частям, теорема о перемене порядка интегрирования, а также все необходимые для дальнейшегоприменения предельные теоремы, в том числе предельная теорема типа теоремы Хелли.

  10. В статье рассматриваются приближенные решения неантагонистических дифференциальных игр. Приближенное равновесие по Нэшу может быть построено по заданному решению вспомогательной стохастической игры с непрерывным временем. Мы рассматриваем случай, когда динамика вспомогательной игры задается марковской цепью с непрерывным временем. Для этой игры функция цены определяется решением системы обыкновенных дифференциальных включений. Таким образом, мы получаем конструкцию приближенного равновесия по Нэшу с выигрышами игроков, близкими к решениям системы обыкновенных дифференциальных включений. Также предложен способ построения марковской игры с непрерывным временем, аппроксимирующей исходную игру.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref