Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается движение твердого тела в однородном поле тяжести в случае высокочастотных вертикальных гармонических колебаний малой амплитуды одной из его точек (точки подвеса). Предполагается, что центр масс тела лежит на одной из главных осей инерции для точки подвеса. В рамках приближенной автономной системы дифференциальных уравнений, записанной в форме канонических уравнений Гамильтона, рассматриваются частные движения тела - перманентные вращения, происходящие вокруг вертикально расположенных осей из главных плоскостей инерции, примыкающих к указанной главной оси. Такие перманентные вращения существуют и для тела с неподвижной точкой подвеса. Исследуется влияние быстрых вибраций на устойчивость этих вращений. Для всех допустимых значений четырехмерного пространства параметров (двух инерционных параметров и параметров, характеризующих частоту вибраций и угловую скорость вращения) выписаны и проиллюстрированы необходимые и в ряде случаев достаточные условия устойчивости, рассматриваемые как условия устойчивости соответствующих положений равновесия приведенной (по Раусу) автономной гамильтоновой системы с двумя степенями свободы. Проведен нелинейный анализ устойчивости для двух частных значений инерционного параметра, отвечающих динамически симметричному телу и телу с геометрией масс для случая Бобылева-Стеклова. Рассмотрены нерезонансный и резонансный случаи, а также случаи вырождения. Проведено сравнение полученных результатов устойчивости с соответствующими результатами для тела с неподвижной точкой.
-
Рассмотрено движение динамически симметричного твердого тела в однородном поле тяжести в случае высокочастотных вертикальных гармонических колебаний малой амплитуды одной из его точек (точки подвеса). Исследование проводится в рамках приближенной автономной системы дифференциальных уравнений, записанной в форме канонических уравнений Гамильтона. Дано подробное описание допустимых дуг перманентных вращений тела, происходящих вокруг вертикально расположенных осей. Выявлены случаи перманентных вращений, обусловленные вибрациями и не существующие для тела с неподвижной точкой. Для одного из таких случаев, когда ось вращения лежит в главной плоскости инерции, не содержащей центр масс тела и не совпадающей с экваториальной плоскостью инерции, проведен полный нелинейный анализ устойчивости соответствующего положения равновесия приведенной системы с двумя степенями свободы. В трехмерном пространстве параметров задачи найдены области устойчивости в линейном приближении. Рассмотрены случаи резонансов третьего и четвертого порядков, а также случаи вырождения.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.