Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Представлена полная аналитическая классификация атомов гиростата Ковалевской–Яхья, возникающих в критических точках ранга 1. Найдены все разделяющие значения гиростатического момента при классификации диаграмм Смейла–Фоменко. Разработан "конструктор" графов Фоменко, применение которого дало полное описание грубой топологии этого интегрируемого случая. Доказано, что имеется девять групп эквивалентных молекул (без меток), содержащих 22 устойчивых графа и 6 неустойчивых по отношению к количеству критических окружностей на критических уровнях.
-
Задача рассеяния для дискретного оператора Шредингера с «резонансным» потенциалом на графе, с. 29-34Рассматривается дискретный оператор Шредингера на графе, являющийся гамильтонианом электрона, в приближении сильной связи в системе, состоящей из квантовой проволоки и двух внедренных квантовых точек. Данный оператор описывает двухбарьерную резонансную наноструктуру, причем один из барьеров представляет собой нелокальный потенциал. Описан существенный и абсолютно непрерывный спектр оператора. Изучается задача рассеяния в стационарной постановке для двух возможных направлений распространения частицы. Найдены условия полного отражения и полного прохождения.
-
Разметка ребер связного графа $G = (V, E)$ называется локальной антимагической, если она является биекцией $f\colon E \to\{1,\ldots ,|E|\}$ такой, что для любой пары смежных вершин $x$ и $y$ выполнено $f^+(x)\not= f^+(y)$, где $f^+(x)= \sum f(e)$ — индуцированная метка вершины, а $e$ пробегает все ребра, инцидентные $x$. Локальное антимагическое хроматическое число графа $G$, обозначаемое $\chi_{la}(G)$, — это минимальное число различных индуцированных меток вершин среди всех локальных антимагических разметок $G$. В данной статье мы охарактеризуем $s$-мостовые графы с локальным антимагическим хроматическим числом 2.
-
В этой статье мы представляем вершинное локальное антимагическое хроматическое число для некоторых графов Кнёделя $\mathcal{G}$ и графов Фибоначчи, дизъюнктного объединения графов Кнёделя и соединенных графов $\mathcal{G}\vee \mathcal{H}$, где $\mathcal{H}\in\{O_s=K_s^C,K_s,C_s,K_{s,\ell}\}$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.