Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'положительная инвариантность':
Найдено статей: 7
  1. Получены необходимые и достаточные условия выживаемости дифференциальной системы с последействием и дифференциального включения с последействием. Получены достаточные условия положительной инвариантности множества для системы (включения) с последействием.

  2. Пусть $T\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, — гомеоморфизм окружности с одной точкой излома $x_{b}$, в которой $T'(x)$ имеет разрыв первого рода и обе односторонние производные в точке $x_{b}$ строго положительные, и иррациональным числом вращения $\rho _{T}$. Предположим, что разложение числа вращения $\rho _{T}$ в непрерывную дробь, начиная с некоторого номера, совпадает с золотым сечением, т.е. $\rho _{T}=[m_{1},m_{2},\dots,m_{l},\,m_{l+1},\ldots],…,m_{s}=1$, $s> l>0$. Поскольку число вращения иррациональное, отображение $T$ является строго эргодическим, т.е. обладает единственной вероятностной инвариантной мерой $\mu_{T}$. В работе А.А. Джалилова и К.М. Ханина доказано, что вероятностная инвариантная мера $\mu_{G}$ любого гомеоморфизма окружности $G\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одной точкой излома $ x_{b}$ и иррациональным числом вращения $\rho _{G}$ является сингулярной относительно меры Лебега $\lambda$ на окружности, т.е. существует измеримое подмножество $A \subset S^{1}$ такое, что $\mu_{G}(A)=1$ и $\lambda(A)=0$. Мы построим термодинамический формализм для гомеоморфизмов $T_{b}\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одним изломом в точке $x_{b}$ и числом вращения, равным золотому сечению, т.е. $\rho _{T}:=\frac{\sqrt{5}-1}{2}$. Существенно используя построенный термодинамический формализм, мы изучили показатели сингулярности инвариантной меры $\mu_{T}$ гомеоморфизма $T$.

  3. Кривоносов Л.Н., Лукьянов В.А.
    Конформная связность со скалярной кривизной, с. 22-35

    Определена конформная связность со скалярной кривизной как обобщение псевдориманова пространства постоянной кривизны. Вычислена матрица кривизны такой связности. Доказано, что на многообразии конформной связности со скалярной кривизной имеется конформная связность с нулевой матрицей кривизны. Дано определение перенормируемого скаляра и доказано существование перенормируемых скаляров на любом многообразии конформной связности, где существует разбиение единицы. Доказано: 1) существование на многообразии конформной связности с нулевой матрицей кривизны конформной связности с положительной, отрицательной и знакопеременной скалярной кривизной; 2) существование на многообразии конформной связности глобальной калибровочно-инвариантной метрики; 3) на гиперповерхности конформного пространства индуцированная конформная связность не может быть с ненулевой скалярной кривизной.

  4. Результаты исследований Е.Л. Тонкова и Е.А. Панасенко распространяются на дифференциальные уравнения и управляемые системы с импульсным воздействием. В терминах функций Ляпунова и производной Кларка получены теоремы сравнения для систем с импульсным воздействием. Рассматривается множество $\mathfrak M\doteq\bigl\{(t,x)\in[t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\},$ заданное непрерывной функцией $t\rightarrow M(t)$, где для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. Получены условия положительной инвариантности данного множества, равномерной устойчивости по Ляпунову и равномерной асимптотической устойчивости. Проведено сравнение с исследованиями других авторов, которые рассматривали вопросы устойчивости нулевого решения для аналогичных систем.

  5. Продолжено исследование условий положительной инвариантности и асимптотической устойчивости заданного множества относительно управляемой системы с импульсным воздействием. Рассматривается множество $\mathfrak M \doteq \bigl\{ (t,x) \in [t_0,+\infty) \times \mathbb{R}^n: x\in M(t)\bigr\}$, где функция $t\rightarrow M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. В терминах функций Ляпунова и производной Кларка получены условия слабой положительной инвариантности данного множества, слабой равномерной устойчивости по Ляпунову и слабой асимптотической устойчивости. Также доказана теорема сравнения для решений систем и уравнений с импульсами, следствием которой являются условия существования решений системы, асимптотически стремящихся к нулю. Полученные результаты проиллюстрированы на примере модели конкуренции двух видов, подверженных импульсному управлению в фиксированные моменты времени.

  6. Под термином «размыкание предиката» понимается сведение задачи поиска и изучения свойств множества истинности заданного предиката к задаче поиска и изучения свойств неподвижных точек некоторого отображения. Размыкание предиката дает дополнительные возможность анализа его множества истинности, а также позволяет строить элементы этого множества с теми или иными свойствами. Известны примеры размыкания нетривиальных предикатов, таких как предикат «быть стабильным (слабо инвариантным) множеством», предикат «быть неупреждающим селектором», предикат «быть седловой точкой», предикат «быть равновесием Нэша». В упомянутых случаях вопрос об априорной оценке возможности размыкания того или иного интересующего нас предиката и о построении соответствующего размыкающего отображения оставался за рамками рассмотрения: размыкающие отображения предоставлялись как готовые объекты. В предлагаемой заметке мы постараемся отчасти закрыть этот пробел: приводятся формальное определение операции размыкания предиката, способы построения и исчисления размыкающих отображений и их основные свойства. Описываемый подход примен\'им во всех упомянутых выше положительных примерах. В качестве иллюстрации проведено следующее этому способу построение размыкающего отображения для предиката «быть нэшевским равновесием».

  7. Тематика исследования данной работы находится на стыке двух направлений качественной теории дифференциальных уравнений — теории показателей Ляпунова и теории колеблемости. В настоящей работе исследуются различные разновидности показателей колеблемости (строгих и нестрогих) знаков решений линейных однородных дифференциальных уравнений третьего порядка с непрерывными на положительной полуоси коэффициентами. Конструктивно в работе построено многопараметрическое семейство дифференциальных уравнений третьего порядка, на котором реализуются различные соотношения между главными значениями показателей колеблемости. При фиксированных значениях последовательности параметров получаются точки из указанного семейства уравнений, в которых все главные значения показателей колеблемости не являются инвариантными относительно бесконечно малых возмущений (то есть исчезающих на бесконечности). Кроме того, на множестве всех ненулевых решений указанного семейства уравнений все показатели колеблемости совпадают между собой. При построении указанного уравнения и доказательстве требуемых результатов использованы аналитические методы качественной теории дифференциальных уравнений и методы теории возмущений решений линейных дифференциальных уравнений, в частности, метод варьирования уравнения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref