Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,L − n. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса y ∈ E. Критерий аппроксимации минимум величины ||y − ŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами α ∈ ω ⊂ S ⊂ En+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора y ∈ E есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.
-
Локальные вставки на основе динамического программирования в задаче маршрутизации с ограничениями, с. 56-75Рассматривается процедура встраивания оптимизируемых фрагментов маршрутных решений в глобальные решения «большой» задачи, определяемые эвристическими алгоритмами. Постановка задачи маршрутизации учитывает некоторые особенности инженерной задачи о последовательной резке деталей, имеющих каждая один внешний и, возможно, несколько внутренних контуров. Последние должны подвергаться резке раньше внешнего, что приводит к большому числу условий предшествования. Данные условия активно используются в интересах снижения сложности вычислений. Тем не менее размерность задачи остается достаточно большой, что, в частности, не позволяет применять «глобальное» динамическое программирование и вынуждает к использованию эвристических алгоритмов (исследуемая задача относится к числу труднорешаемых в традиционном понимании). Поэтому представляет интерес разработка методов коррекции решений, получаемых на основе упомянутых алгоритмов. В настоящей работе такая коррекция реализуется посредством замены фрагментов (упомянутых решений), имеющих умеренную размерность, оптимальными «блоками», конструируемыми на основе динамического программирования с локальными условиями предшествования, которые согласуются с ограничениями исходной «большой» задачи. Предлагаемая замена не ухудшает, а, в типичных случаях, улучшает качество исходного «эвристического» решения, что подтверждается вычислительным экспериментом на многоядерной ПЭВМ.
Предложенный алгоритм реализован в итерационном режиме: полученное после первой вставки на основе динамического программирования решение в виде пары «маршрут-трасса» принимается за исходное, для которого вновь конструируется вставка. При этом начало этой новой вставки выбирается случайно в пределах, определяемых возможностями формирования скользящего «окна» ощутимой, но все же достаточной для применения экономичной версии динамического программирования размерности. Далее процедура повторяется. Работа итерационного алгоритма иллюстрируется решением модельных задач, включая варианты с достаточно плотной «упаковкой» заготовок деталей на листе, что типично для машиностроительного производства.
-
О некоторых свойствах *-интеграла, с. 66-89Продолжаются исследования автора по теории правильных функций и *-интеграла. Изучается возможность представления правильной функции в виде суммы непрерывной справа и непрерывной слева функций ($rl$-представимости). Доказывается предельная теорема для *-интеграла, позволяющая приближать разрывные интегрируемую и интегрирующую функции последовательностями абсолютно непрерывных функций. Доказана новая теорема о $\delta$-корректности решения обыкновенного линейного дифференциального уравнения с обобщенными функциями в коэффициентах, определяемого с помощью квазидифференциального уравнения. Получена формула для вычисления полной вариации неопределенного *-интеграла от $\sigma$-непрерывной функции по функции ограниченной вариации, обобщающая известную формулу для полной вариации абсолютно непрерывной функции. Формула интересна и в случае неопределенного $RS$-интеграла.
-
Рассматривается «аддитивная» задача последовательного обхода мегаполисов (непустых конечных множеств), при посещении которых выполняются некоторые работы; перемещения и выполняемые работы оцениваются функциями стоимости, допускающими зависимость от списка заданий. Имеются ограничения различных типов, среди которых выделяются условия предшествования, используемые «в положительном направлении» (в интересах снижения сложности вычислений). Кроме того, в постановке присутствуют динамические ограничения, формирующиеся по мере выполнения заданий. Исследуемая постановка ориентирована на инженерные приложения, связанные с листовой резкой на машинах с ЧПУ. Исследуется подход к построению оптимальных решений на основе нестандартной версии динамического программирования (ДП). В рамках данного подхода учитываются ограничения различных типов, включая динамические ограничения, естественно возникающие при листовой резке деталей (в частности учитываются тепловые допуски, связанные с надежным отводом тепла из окрестностей точек врезки). При этом допускается комбинация «прямых» запретов на перемещения и выполнение врезки, а также системы штрафов. В последнем случае типично возникают функции стоимости с зависимостью от списка заданий. Применяемый вариант ДП позволяет оптимизировать точку старта, маршрут, отождествляемый с перестановкой индексов, и трассу (траекторию), согласованную с данным маршрутом. На этапе построения функции Беллмана используется экономичный вариант ДП, при котором весь массив значений этой функции не насчитывается, а определяется только система ее слоев (при условиях предшествования, типичных для задачи, связанной с листовой резкой, это приводит к существенному снижению вычислительных затрат). На основе ДП построен оптимальный алгоритм, реализованный на ПЭВМ; приведены результаты вычислительного эксперимента.
-
В статье рассмотрены методы для обнаружения особых точек на аффинной гиперповерхности или подтверждения гладкости этой гиперповерхности. Наш подход основан на построении касательных прямых к данной гиперповерхности. Существование хотя бы одной особой точки накладывает ограничение на алгебраическое уравнение, определяющее совокупность касательных прямых, проходящих через выделенную точку в пространстве. Это уравнение основано на формуле для дискриминанта многочлена от одной переменной. Для произвольно фиксированной степени гиперповерхности нами предложен детерминированный алгоритм полиномиального времени для вычисления базиса в подпространстве соответствующих многочленов. Если линейная комбинация таких многочленов не обращается в нуль на гиперповерхности, то гиперповерхность гладкая. Мы формулируем достаточное условие гладкости, проверяемое за полиномиальное время. Для некоторых гладких аффинных гиперповерхностей это условие выполнено. Этот набор включает графики кубических многочленов от нескольких переменных, а также другие примеры кубических гиперповерхностей. С другой стороны, это условие не выполняется для некоторых кубических гиперповерхностей высокой размерности. Это не мешает применению метода в низких размерностях. Также поиск особых точек важен для решения некоторых задач машинного зрения, в том числе для обнаружения угла у препятствия по последовательности кадров с одной камеры на движущемся транспортном средстве.
-
Работа посвящена связи параллельных и последовательных вычислений. С одной стороны, рассматривается класс словарных предикатов, основанных на последовательных вычислениях, ограниченных по памяти константами и имеющих полиномиальную временную сложность. С другой стороны, рассматривается класс словарных предикатов, вычислимых на параллельных альтернирующих машинах за логарифмическое время. Доказано совпадение соответствующих классов. Предложено направление использования полученных результатов для взаимного преобразования и сочетания вычислений на молекулярных биоподобных последовательных машинах и параллельных вычислениях на векторно-матричных компьютерах. Предполагаемые области применения: обработка изображений в реальном масштабе времени для задач управления, анализ больших текстов и других больших данных.
-
Зрительные образы весьма вариативны. Например, рукописные буквы, объекты аэрокосмических наблюдений. Высокое разнообразие и большой объем неструктурированной информации приводят к необходимости сложных и ресурсоемких вычислений. В подходах к анализу изображений, опирающихся на онтологию предметной области, к сожалению, не оговаривается какой-либо способ автоматического подбора критериев (признаков) и правил принятия решений, а недостаточная структурированность прецедентов при большой вариативности изображений объектов приводит к быстрому росту базы прецедентов, что существенно снижает производительность системы поддержки принятия решений. В статье предлагается подход к структурному анализу изображений, заключающийся в последовательном уточнении признаков объектов и ослаблении правил интерпретации в ходе итерационного поиска фактов с использованием онтологии изображений, представленных в виде атрибутивных графов отношений между элементами объектов. Алгоритм рассуждений на графической информации состоит в последовательности задачных (функциональных) действий, необходимых для обработки и анализа изображения в соответствии с поставленной задачей, действий системы по подготовке условий для их выполнения, а также по организации и управлению процессом рассуждений.
-
Рассматривается задача распознавания рукописных текстов с растровых изображений. Описывается метод восстановления последовательности записи рукописного текста, который позволит свести задачу offline-распознавания к задаче online-распознавания. Метод заключается в поиске эйлерова пути с минимальным весом в графе скелета рукописных символов. В качестве весов рассматриваются некоторые числовые характеристики, отражающие сложность перехода из одного ребра в другое через общую вершину. Для этого строится таблица всевозможных комбинаций пар. При отсутствии в исходном графе эйлерова пути выполняется поиск пути с минимальным числом разрывов. Для разбиения ребер на пары и вычисления весов в вершинах нечетной кратности вводится понятие виртуального ребра, переход по которому означает образование разрыва в пути. Рассматривается алгоритм поиска пути в скелете символа, основанный на алгоритме Флери поиска эйлерова пути.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.