Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Независимость оценок погрешности интерполяции многочленами степени $2k+1$ от углов треугольника, с. 160-168Рассматривается биркгофова интерполяция функции двух переменных многочленами степени $2k+1$ по совокупности двух переменных на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности аппроксимации для производных функции в предложенных конечных элементах зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок погрешности аппроксимации функции и ее частных производных. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу. В данной работе для рассматриваемых интерполяционных условий предлагается набор конкретных функций, позволяющих получить соответствующие оценки погрешности для определенных частных производных.
-
О нелокальном возмущении задачи на собственные значения оператора дифференцирования на отрезке, с. 186-193Построен характеристический многочлен спектральной задачи дифференциального уравнения первого порядка на отрезке со спектральным параметром в краевом условии с интегральным возмущением, которое является целой аналитической функцией от спектрального параметра. На основе формулы характеристического многочлена доказаны выводы об асимптотике спектра возмущенной спектральной задачи.
-
Рассматривается задача построения вершинного описания выпуклого полиэдра, заданного как множество решений некоторой системы линейных неравенств, коэффициенты которой являются алгебраическими числами. Обратная задача эквивалентна (двойственна) исходной. Предлагаются программные реализации нескольких модификаций хорошо известного метода двойного описания (метода Моцкина-Бургера), решающего поставленную задачу. Рассматривается два случая: 1) элементы системы неравенств - произвольные алгебраические числа, при этом каждое такое число задается минимальным многочленом и локализующим интервалом; 2) элементы системы неравенств принадлежат заданному конечному расширению ${\mathbb Q} (\alpha)$ поля ${\mathbb Q}$, при этом для $\alpha$ задаются минимальный многочлен и локализующий интервал, а все элементы исходной системы, конечные и промежуточные результаты представлены как многочлены от $\alpha$. Как и ожидалось, программная реализация для второго варианта значительно превосходит реализацию для первого варианта по производительности. Для большего ускорения во втором случае предлагается использовать булевы матрицы вместо матриц невязок. Результаты вычислительного эксперимента показывают, что программные реализации вполне пригодны для решения задач умеренных размеров.
-
Рассматривается билинейная управляемая система, заданная линейной стационарной дифференциальной системой с несколькими несоизмеримыми запаздываниями в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянные векторы управления таким образом, чтобы характеристическая функция замкнутой системы равнялась многочлену с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Показана взаимосвязь условий критерия со свойством согласованности усеченной системы без запаздываний. Получены следствия о стабилизации билинейных систем с запаздываниями. Аналогичные результаты получены для билинейных системы с несколькими запаздываниями с дискретным временем. Рассмотрен иллюстрирующий пример.
-
Рекуррентные соотношения для сечений производящего ряда решения многомерного разностного уравнения, с. 414-423В данной работе изучены сечения производящего ряда для решений линейного многомерного разностного уравнения с постоянными коэффициентами и найдены рекуррентные соотношения, связывающие такие сечения. Как следствие, доказан многомерный аналог теоремы Муавра о рациональности сечений производящего ряда в зависимости от вида начальных данных задачи Коши для многомерного разностного уравнения. Для задач о числе путей на целочисленной решетке показано, что при подходящем выборе шагов сечения их производящего ряда представляют известные последовательности многочленов (Фибоначчи, Пелля и др.).
-
Независимость оценок погрешности интерполяции многочленами четвертой степени от углов треугольника, с. 64-74Рассматриваются два способа биркгофовой интерполяции функции двух переменных многочленами четвертой степени на треугольнике для метода конечных элементов. Оценки погрешности для предложенных элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок.
-
Независимость оценок погрешности интерполяции многочленами пятой степени от углов треугольника, с. 53-64Рассматриваются несколько способов биркгофовой интерполяции функции двух переменных многочленами пятой степени на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности для предложенных элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу.
-
Рассматриваются два способа биркгофовой интерполяции функции двух переменных многочленами второй степени на треугольнике для метода конечных элементов. Оценки погрешности для одного из предложенных параболических элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок.
-
В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.
-
Рассматривается биркгофова интерполяция функции двух переменных многочленами шестой степени на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности для предложенных элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.