Текущий выпуск Выпуск 2, 2017 Том 27

О касательных прямых к аффинным гиперповерхностям

 pdf (246K)

В статье рассмотрены методы для обнаружения особых точек на аффинной гиперповерхности или подтверждения гладкости этой гиперповерхности. Наш подход основан на построении касательных прямых к данной гиперповерхности. Существование хотя бы одной особой точки накладывает ограничение на алгебраическое уравнение, определяющее совокупность касательных прямых, проходящих через выделенную точку в пространстве. Это уравнение основано на формуле для дискриминанта многочлена от одной переменной. Для произвольно фиксированной степени гиперповерхности нами предложен детерминированный алгоритм полиномиального времени для вычисления базиса в подпространстве соответствующих многочленов. Если линейная комбинация таких многочленов не обращается в нуль на гиперповерхности, то гиперповерхность гладкая. Мы формулируем достаточное условие гладкости, проверяемое за полиномиальное время. Для некоторых гладких аффинных гиперповерхностей это условие выполнено. Этот набор включает графики кубических многочленов от нескольких переменных, а также другие примеры кубических гиперповерхностей. С другой стороны, это условие не выполняется для некоторых кубических гиперповерхностей высокой размерности. Это не мешает применению метода в низких размерностях. Также поиск особых точек важен для решения некоторых задач машинного зрения, в том числе для обнаружения угла у препятствия по последовательности кадров с одной камеры на движущемся транспортном средстве.

Ключевые слова: гиперповерхность, особая точка, касательная прямая, многочлен, дискриминант
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2017, т. 27, вып. 2, с. 248-256
DOI: 10.20537/vm170208

On tangent lines to affine hypersurfaces

The article focuses on methods to look for singular points of an affine hypersurface or to confirm the smoothness of the hypersurface. Our approach is based on the description of tangent lines to the hypersurface. The existence of at least one singular point imposes a restriction on the algebraic equation that determines the set of tangent lines passing through the selected point of the space. This equation is based on the formula for the discriminant of a univariate polynomial. For an arbitrary fixed hypersurface degree, we have proposed a deterministic polynomial time algorithm for computing a basis for the subspace of the corresponding polynomials. If a linear combination of these polynomials does not vanish on the hypersurface, then the hypersurface is smooth. We state a sufficient smoothness condition, which is verifiable in polynomial time. There are smooth affine hypersurfaces for which the condition is satisfied. The set includes the graphs of cubic polynomials in many variables as well as other examples of cubic hypersurfaces. On the other hand, the condition is violated for some high-dimensional cubic hypersurfaces. This does not prevent the application of the method in low dimensions. Searching for singular points is also important for solving some problems of machine vision, including detection of a corner by means of the frame sequence with one camera on a moving vehicle.

Keywords: hypersurface, singular point, tangent line, polynomial, discriminant
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2017, vol. 27, issue 2, pp. 248-256

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref