Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'преобразование Фурье':
Найдено статей: 6
  1. В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.

  2. В настоящей работе сформулирована, поставлена и решена обратная граничная задача теплопроводности, при условии, что коэффициент теплопроводности является кусочно-постоянным. Эта задача занимает важное место в технике, так как теплонагруженные узлы технических конструкций покрывают теплоизолирующим слоем, термические характеристики которого сильно отличаются от термических характеристик самой конструкции. Подобные задачи находят свое применение при планировании стендовых испытаний летательных аппаратов. Современные композитные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ. В ракетных двигателях внутреннюю стенку камеры внутреннего сгорания покрывают теплозащитным слоем, который изготавливают из композитных материалов. Благодаря свойствам этих материалов теплозащитный слой значительно снижает температуру стенки внутреннего сгорания. При решении обратной граничной задачи необходимо учитывать разницу коэффициентов теплопроводности составных частей композитных материалов, из которых изготавливают стенку камеры. Задача исследовалась с помощью ряда Фурье по собственным функциям для уравнения с разрывным коэффициентом. Доказано, что для решения обратной задачи применимо преобразование Фурье по переменной времени. Для решения обратной задачи использовано преобразование Фурье, позволяющее свести обратную задачу к операторному уравнению, которое было решено методом невязки.

  3. Для приведенной канонической системы интегро-дифференциальных уравнений вязкоупругости рассмотрены прямая и обратная задачи определения поля скоростей упругих волн и матрицы релаксации. Задачи заменены замкнутой системой интегральных уравнений типа Вольтерра второго рода относительно преобразования Фурье по переменным $x_{1}$ и $x_{2}$ для решения прямой и обратной задачи. Далее к этой системе применяется метод сжимающих отображений в пространстве непрерывных функций с весовой нормой. В работе доказаны теоремы о глобальные существования и единственности решений задач.

  4. Проводится исследование динамической эволюции шести моделей рассеянных звездных скоплений по данным о фазовых координатах звезд, полученных при численном интегрировании уравнений движения звезд. Для этой цели используются фазовые координаты звезд для 100 равноотстоящих моментов времени от начального t=0 до tm≅5.1τvr (τvr - начальное время бурной релаксации скопления). На этом интервале времени ошибки, связанные с округлением и экспоненциальным нарастанием возмущений в исходных координатах звезд, существенно не сказываются на статистических выводах о характере движения звезд скопления. Метод исследования основан на вычислениях взаимных корреляционных функций C1,2=C1,2(τ,r) (τ - временная задержка, r - расстояние между точками) для флуктуаций фазовой плотности и применении Фурье-преобразования функций C1,2 для расчета спектра частот и дисперсионных соотношений. Анализ графиков функций C1,2, спектров частот и дисперсионных кривых подтверждает существование в моделях волн фазовой плотности, позволяет установить полный спектр радиальных колебаний фазовой плотности, отделить устойчивые колебания от неустойчивых, рассчитать периоды колебаний фазовой плотности и инкременты нарастания неустойчивых колебаний фазовой плотности. Подтверждены теоретические оценки периодов известных неустойчивых гомологических колебаний ядер моделей скоплений. Указываются некоторые астрофизические приложения полученных результатов: возникновение иррегулярных структур в рассеянных скоплениях, слабая турбулентность в движениях звезд скоплений.

  5. Статья посвящена решению обратной граничной задачи для стержня, состоящего из композиционных материалов. В обратной задаче требуется, используя информацию о температуре теплового потока в разделе сред, определить температуру на одном из концов стержня. В работе представлен метод проекционной регуляризации, который позволил приближенно оценить погрешность полученного решения обратной задачи. Для проверки вычислительной эффективности этого метода были проведены тестовые расчеты.

  6. Предлагается осесимметрическая модель, построенная на основе уравнений Стокса, для исследования образования многокольцевой структуры в ползущем двухслойном течении с переменной толщиной слоев. Каждый слой имеет постоянную плотность и вязкость. Верхний слой имеет меньшую плотность, чем нижний. Течение создается рельефом поверхности и границы раздела слоев. Предполагается, что эффекты поверхностного натяжения пренебрежимо малы. Мы используем асимптотический метод многих масштабов для получения уравнений, описывающих неустойчивость, возникающую в виде волны в этом течении. С помощью преобразований Фурье и Лапласа мы исследуем уравнения главного приближения для этой неустойчивости в предположении малости возмущений. Асимптотическое исследование показывает, что эта неустойчивость проявляется в виде осесимметричной волны, длина которой соизмерима с толщиной слоев, и толщины слоев играют главную роль в пространственном распределении ее экстремумов. Остальные параметры модели влияют в основном на амплитуду волны. Получено уравнение, связывающее толщины слоев с распределением экстремумов, которое применяется для исследования закономерности расположения кольцевых хребтов, наблюдаемой для большинства крупномасштабных кольцевых структур на Луне. Используя параметры некоторых лунных кольцевых структур, мы определили радиусы последовательно расположенных экстремумов неустойчивости и провели сравнение модельных результатов с радиусами концентрических хребтов некоторых многокольцевых структур на Луне.

     

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref