Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'продолжение меры':
Найдено статей: 2
  1. Рассматривается вероятностная модель, заданная разностным уравнением $$x_{n+1}=f(\omega_n,x_n), \quad (\omega_n,x_n)\in \Omega\times [a,b], \quad n=0,1,\dots, \qquad\qquad(1)$$ где $\Omega$ - заданное множество с сигма-алгеброй подмножеств $\widetilde{\mathfrak A},$ на которой определена вероятностная мера $\widetilde \mu;$ $\mu$ - продолжение меры $\widetilde \mu$ на сигма-алгебру, порожденную цилиндрическими множествами. Исследуются инвариантные множества и аттракторы уравнения со случайными параметрами $(1).$ Получены условия, при которых заданное множество является максимальным аттрактором. Показано, что внутри инвариантного множества $A\subseteq [a,b]$ могут существовать решения, хаотические с вероятностью единица. Это происходит в случае, когда существуют $m_i\in\mathbb N$ и множества $\Omega_i\subset\Omega$ такие, что $\mu(\Omega_i)>0,$ $i=1,2,$ и ${\rm cl} \,f^{m_1}(\Omega_1,A)\cap \,{\rm cl} f^{m_2}(\Omega_2,A)=\varnothing.$ Решения, хаотические с вероятностью единица, также наблюдаются в случае, когда уравнение $(1)$ либо не имеет ни одного цикла, либо все циклы отталкивающие с вероятностью единица. Результаты работы проиллюстрированы на примере непрерывно-дискретной вероятностной модели динамики изолированной популяции; для данной модели исследованы различные динамические режимы развития, которые имеют определенные отличия от режимов детерминированных моделей и более полно отображают процессы, происходящие в реальных физических системах.

  2. Рассматривается оператор, сопоставляющий мере, определенной на алгебре множеств, ее продолжение на сигма-алгебру, порожденную данной алгеброй. На основе представления продолженной меры в терминах минимакса устанавливается, что упомянутый оператор является изометрическим изоморфизмом при использовании традиционных способов нормирования пространств, элементами которых являются меры. Устанавливаются некоторые свойства, связанные с сохранением порядковых соотношений при действии оператора продолжения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref