Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'пространство Родрига':
Найдено статей: 2
  1. Описан универсальный метод для моделирования равномерных распределений точек на гладких регулярных поверхностях в евклидовых пространствах различной размерности. Представлена интерпретация множества возможных значений параметров Родрига-Гамильтона, используемых при описании вращения твердого тела как множества точек трехмерной гиперсферы в четырехмерном евклидовом пространстве. Установлена связь между случайными равновероятными вращениями твердого тела и равномерным распределением точек на поверхности трехмерной гиперсферы в четырехмерном евклидовом пространстве.

  2. В статье рассматривается метод поиска и анализа текстурных компонент по прямым полюсным фигурам, с учетом симметрии кубического кристалла и образца. Алгоритм основан на представлении плоскостей отражения полярным комплексом векторов. Поиск ориентации происходит путем перемещения оси полярного комплекса по единичной полусфере, с последующим вращением полярного комплекса относительно этой оси. Далее определяется положение стереографических проекций векторов полярного комплекса на дискретной прямой полюсной фигуре. Ориентация считается найденной, если проекции по крайней мере трех векторов полярного комплекса попадают в область с ненулевой интенсивностью. Для каждой ориентации вычисляется вектор Родрига. Кроме того, определяются углы Эйлера и индексы Миллера. Текстурные компоненты выделяются в интерактивном режиме путем кластеризации данных в пространстве Родрига. С помощью ковариационной матрицы определяются собственные значения и векторы, характеризующие пространственное рассеяние текстурных компонент. В работе исследуются полюсные фигуры алюминиевой фольги после различных текстурных преобразований. Найденные текстурные компоненты представлены в пространстве Родрига.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref