Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'равномерная глобальная достижимость':
Найдено статей: 5
  1. Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).

  2. Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами $$ \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1)$$ Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t),$ $t\geqslant 0.$ Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad\qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы $(2)$ означает существование такой матричной функции $U(t),$ $t\geqslant 0,$ которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N,$ $\det H_k>0.$ Представленная задача решается в предположении равномерной полной управляемости системы $(1),$ соответствующей замкнутой системе $(2),$ т.е. при условии существования таких $\sigma>0$ и $\gamma>0,$ что при любых начальном моменте времени $t_0\geqslant 0$ и начальном состоянии $x(t_0)=x_0\in \mathbb{R}^n$ системы (1) на отрезке $[t_0,t_0+\sigma]$ найдется измеримое и ограниченное векторное управление $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ переводящее вектор начального состояния этой системы в ноль на данном отрезке. Доказано, что в двумерном случае, т.е. при $n=2,$ свойство равномерной полной управляемости системы $(1)$ является достаточным условием равномерной глобальной достижимости соответствующей системы $(2).$

  3.  

    Исследуются условия, при которых управляемая система  = f(t, x, u), uU(t, x), вместе с замыканием множества сдвигов (относительно времени t) управляемой системы обладает свойством равномерной локальной или равномерной глобальной достижимости на заданном отрезке времени. Не предполагается, что функция (t, x) → U(t, x), задающая геометрические ограничения на допустимые управления u(t, x) ∈ U(t, x), имеет выпуклые компактные образы и не предполагается, что соответствующее управляемой системе дифференциальное включение имеет выпуклые образы.

     

  4. Рассматривается линейная нестационарная управляемая система $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ с кусочно-непрерывными и ограниченными $\omega$-периодическими матрицами коэффициентов $A(\cdot)$ и $B(\cdot)$. Управление в системе (1) строится по принципу линейной обратной связи $u=U(t)x$ с кусочно-непрерывной и ограниченной матричной функцией $U(t)$, $t\in \mathbb{R}$. Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы (2) означает существование такой матричной функции $U(t)$, $t\in \mathbb{R}$, которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb{Z}$, $\det H_k>0$. Представленная задача решается в предположении равномерной полной управляемости (в смысле Калмана) системы (1), соответствующей замкнутой системе (2), т.е. при условии существования для системы (1) таких чисел $\sigma>0$ и $\alpha_i>0$, $i=\overline{1,4}$, что при всяких числе $t_0\in\mathbb{R}$ и векторе $\xi\in \mathbb{R}^n$ справедливы неравенства $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ в которых $X(t,s)$ - матрица Коши линейной системы (1) при $u(t)\equiv0.$ Доказано, что свойство равномерной полной управляемости (в смысле Калмана) периодической системы (1) является необходимым и достаточным условием равномерной глобальной достижимости соответствующей системы (2).

  5. Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами

    $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad(1) $$

    Управление в системе $(1)$ строится в виде линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t)$, $t\geqslant 0$. Для замкнутой системы

    $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad(2)$$

    введено понятие равномерной глобальной квазидостижимости, которое является ослаблением равномерной глобальной достижимости - свойства системы $(2)$, позволяющего за счет выбора функции $U(t)$, $t\geqslant 0$, для матрицы Коши $X_U(t,s)$ этой системы обеспечить выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N$, $\det H_k>0$. Доказано, что из равномерной глобальной квазидостижимости системы $(2)$ следует глобальная скаляризуемость этой системы, то есть существование для произвольной наперед заданной локально интегрируемой и интегрально ограниченной скалярной функции $p=p(t)$, $t\geqslant0$, такой измеримой и ограниченной матричной функции $U=U(t)$, $t\geqslant0$, при которой система $(2)$ асимптотически эквивалентна системе скалярного типа $\dot z=p(t)z$, $z\in\mathbb{R}^n,\ t\geqslant0$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref