Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Дескрипционная логика на графах изображений, с. 582-594В работе предлагается для формального описания и структурного анализа изображений использовать расширение $ \mathcal{ALC}(GI)$ дескрипционной логики $ \mathcal{ALC} $. Концепты и роли логики $ \mathcal{ALC} (GI)$ интерпретируются на графе изображения и его подграфах. Описана модель изображения в виде многослойного атрибутивного графа. Граф изображения содержит слой цветовых сегментов, слой границ, слой скелетонов. Каждый слой представляет собой планарный граф, слои связаны между собой отношениями «предок-потомок». Переход от пиксельного представления изображения к графовому позволяет существенно увеличить эффективность его анализа. Приведены примеры предметных терминологических аксиом, определяющих структурные элементы изображения и составленные из них буквы, а также результаты эксперимента, проведенного на задаче распознавания букв в слитном рукописном тексте.
-
В работе рассматривается задача распознавания рукописных математических формул. Описываются основные проблемы, возникающие при решении данной задачи. Описывается метод предупреждения и исправления ошибок распознавания, основанный на ручном управлении процессом распознавания. Приводятся математические модели предложенного метода, основанные на использовании элементов теории графов. Для этого вводится понятие регулярного дерева изображения формулы, которое позволяет хранить все варианты распознавания исходного изображения формулы в наиболее компактном виде и упрощать процесс группового редактирования множества вариантов распознавания, связанный с изменением характера связи между вершинами графа. Приводится пример удобного интерфейса программы для управления процессом распознавания и исправления ошибок, который не требует от пользователя знания формата представления математических формул.
-
Рассматривается задача распознавания рукописных текстов с растровых изображений. Описывается метод восстановления последовательности записи рукописного текста, который позволит свести задачу offline-распознавания к задаче online-распознавания. Метод заключается в поиске эйлерова пути с минимальным весом в графе скелета рукописных символов. В качестве весов рассматриваются некоторые числовые характеристики, отражающие сложность перехода из одного ребра в другое через общую вершину. Для этого строится таблица всевозможных комбинаций пар. При отсутствии в исходном графе эйлерова пути выполняется поиск пути с минимальным числом разрывов. Для разбиения ребер на пары и вычисления весов в вершинах нечетной кратности вводится понятие виртуального ребра, переход по которому означает образование разрыва в пути. Рассматривается алгоритм поиска пути в скелете символа, основанный на алгоритме Флери поиска эйлерова пути.
-
Рассматриваются задача классификации текстурных изображений и проблема уменьшения пространства признаков. Предлагается редукция задачи многоальтернативной классификации до бинарной одномерной задачи, в которой допустимо использовать байесовский подход c одномерными оценками распределений. Вводится гипотеза о бета-распределении значений признаков для одного класса. Параметры распределения оцениваются методом моментов. Для оценки четырех параметров требуются аналитические выражения и статистические оценки первых четырех моментов этого распределения. После оценки параметров осуществляется проверка гипотезы о распределении по критерию Пирсона. Экспериментально установлено, что модель бета-распределения в большинстве случаев применима к оценке распределений значений признаков. Сделан вывод о необходимости такой проверки для каждой обучающей выборки. В работе также предлагается по результатам оценки степени пересечений оцененных распределений классов оценивать эффективность признака. Рассматривается взаимная корреляция выбранных признаков. Вводится способ оценки информативности признаков, основанный на минимуме средней вероятности ошибки для одного признака и взаимной некоррелированности для системы признаков. На основе алгоритма оценки информативности строится система признаков для каждой пары классов. Формулируется алгоритм классификации, который использует полученные системы признаков и принимает решение на основе оценки плотности моделью бета-распределения на этапе бинарной задачи. Кроме того, cформулированный алгоритм объединяет результаты частных бинарных решений и принимает окончательное решение в задаче классификации.
-
Работа посвящена использованию основных элементов теории графов в задаче распознавания математических формул. Вводятся понятия двухуровневых и двумерно ориентированных графов, которые позволяют описывать сложные изображения, состоящие из иерархии частей с особым взаимным расположением. Рассматривается специальное отображение, которое из математической формулы строит соответствующий двумерно ориентированный граф, называемый графом изображения формулы. Приводятся правила отображения для основных классов математических формул. Описывается метод решения задачи распознавания, основанного на обратной задаче получения графа изображения формулы.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.