Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Исследуется обратная задача определения многомерного ядра интегрального члена, зависящего от временной переменной $t$ и $ (n-1)$-мерной пространственной переменной $x'=\left(x_1,\ldots, x_ {n-1}\right)$ из $n$-мерного уравнения теплопроводности с переменным коэффициентом теплопроводности. Прямую задачу представляет задача Коши для этого уравнения. Интегральный член имеет вид свертки по времени ядра и решения прямой задачи. Дополнительное условие для решения обратной задачи задается решение прямой задачи на гиперплоскости $x_n = 0.$ В начале изучаются свойства решения прямой задачи. Для этого эта задача сводится к решению интегрального уравнения второго порядка вольтерровского типа и к нему применяется метод последовательных приближений. Далее поставленная обратная задача приводится к двум вспомогательным задачам, дополнительное условие второй из них содержит неизвестное ядро вне интеграла. Затем вспомогательные задачи заменяются эквивалентной замкнутой системой интегральных уравнений вольтерровского типа относительно неизвестных функций. Применяя метод сжатых отображений к этой системе в классе гёльдеровских функций доказываем основной результат статьи, который является теоремой локального существования и единственности решения обратной задачи.
-
В статье для игр в нормальной формой при интервальной неопределенности вводится концепция сильного коалиционного равновесия. Эта концепция основана на синтезе трех понятий: индивидуальной рациональности, коллективной рациональности для игр в нормальной форме без побочных платежей и коалиционной рациональности. Для простоты изложения, сильное коалиционное равновесие рассматривается для игр 4 лиц при неопределенности. Достаточные условия существования сильного коалиционного равновесия в чистых стратегиях устанавливаются с помощью седловой точки специального вида свертки Гермейра. Наконец, следуя подходу Бореля, Неймана и Нэша, доказана теорема существования сильного коалиционного равновесия в смешанных стратегиях при стандартных для теории игр условиях (компактность и выпуклость множеств стратегий игроков, компактность множества неопределенностей и непрерывность функций выигрыша).
-
Некоторые модели вычисления свертки, с. 199-200Предложены три модели вычисления свертки: основанная на нахождении решения некоторой линейной алгебраической системы; содержащая сдвиги; основанная на билинейных формах. Приведена вычислительная эффективность этих моделей по сравнению с имеющимися моделями.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.