Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'сингулярное возмущение':
Найдено статей: 4
  1. В статье исследуются асимптотические поведения решений сингулярно возмущенных двухточечных краевых задач на отрезке. Объектом исследования является линейное неоднородное обыкновенное дифференциальное уравнение второго порядка с малым параметром при старшей производной искомой функций. Особенности рассматриваемых задач состоят в том, что малый параметр находится при старшей производной искомой функций и соответствующее невозмущенное дифференциальное уравнение первого порядка имеет иррегулярную особую точку на левом конце отрезка. На концах отрезка ставятся краевые условия. Рассматриваются две задачи, в одном функция перед первой производной искомой функций не положительна на рассматриваемом отрезке, а во втором не отрицательна. Асимптотические разложения задач строятся классическим методом пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Однако напрямую этот метод применить невозможно, так как внешнее решение имеет особенность. Мы сначала убираем эту особенность из внешнего решения, затем применяем метод пограничных функций. Построенные асимптотические разложения обоснованы с помощью принципа максимума, т.е. получены оценки для остаточных функций.

  2. Давлетов Д.Б., Давлетов О.Б., Давлетова Р.Р., Ершов А.А.
    О собственных элементах двумерной краевой задачи типа Стеклова для оператора Ламэ, с. 54-65

    В настоящей работе исследуется двумерная краевая задача типа Стеклова для оператора Ламэ в полуполосе, которая является предельной для сингулярно возмущенной краевой задачи в полуполосе с малым отверстием. Доказана теорема о существовании собственных элементов исследуемой краевой задачи. В частности, получены оценки для собственных значений, выраженные через постоянные Ламэ и параметр, определяющий ширину полуполосы, а также уточнена структура соответствующих собственных вектор-функций, определяющая их поведение при удалении от основания полуполосы. Более того, найдены явные выражения собственных значений предельной краевой задачи с точностью до решения системы алгебраических уравнений. Результаты, полученные в данной работе, позволят построить и строго обосновать асимптотическое разложение собственного значения сингулярно возмущенной краевой задачи в полуполосе с малым отверстием с точностью до степени малого параметра, характеризующего размер отверстия.

  3. Изучается движение трех точечных вихрей в случае, если центр завихренности лежит на траектории одного из вихрей или находится достаточно близко от нее. Численно исследованы траектории вихрей в широком диапазоне изменения их интенсивностей. Вычислены асимптотики траекторий вихрей для конфигураций, близких к сингулярной или коллинеарной.

  4. Лебедев В.Г., Сысоева А.А., Княжева И.С., Данилов Д.А., Галенко П.К.
    Компьютерное моделирование высокоскоростного затвердевания разбавленного расплава Si-As, с. 123-140

    В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.

    Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.

    Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref