Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Асимптотика решения краевой задачи, когда предельное уравнение имеет нерегулярную особую точку, с. 332-340В статье исследуются асимптотические поведения решений сингулярно возмущенных двухточечных краевых задач на отрезке. Объектом исследования является линейное неоднородное обыкновенное дифференциальное уравнение второго порядка с малым параметром при старшей производной искомой функций. Особенности рассматриваемых задач состоят в том, что малый параметр находится при старшей производной искомой функций и соответствующее невозмущенное дифференциальное уравнение первого порядка имеет иррегулярную особую точку на левом конце отрезка. На концах отрезка ставятся краевые условия. Рассматриваются две задачи, в одном функция перед первой производной искомой функций не положительна на рассматриваемом отрезке, а во втором не отрицательна. Асимптотические разложения задач строятся классическим методом пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Однако напрямую этот метод применить невозможно, так как внешнее решение имеет особенность. Мы сначала убираем эту особенность из внешнего решения, затем применяем метод пограничных функций. Построенные асимптотические разложения обоснованы с помощью принципа максимума, т.е. получены оценки для остаточных функций.
-
В настоящей работе исследуется двумерная краевая задача типа Стеклова для оператора Ламэ в полуполосе, которая является предельной для сингулярно возмущенной краевой задачи в полуполосе с малым отверстием. Доказана теорема о существовании собственных элементов исследуемой краевой задачи. В частности, получены оценки для собственных значений, выраженные через постоянные Ламэ и параметр, определяющий ширину полуполосы, а также уточнена структура соответствующих собственных вектор-функций, определяющая их поведение при удалении от основания полуполосы. Более того, найдены явные выражения собственных значений предельной краевой задачи с точностью до решения системы алгебраических уравнений. Результаты, полученные в данной работе, позволят построить и строго обосновать асимптотическое разложение собственного значения сингулярно возмущенной краевой задачи в полуполосе с малым отверстием с точностью до степени малого параметра, характеризующего размер отверстия.
-
Движение трех точечных вихрей в случае, если один из них проходит через центр завихренности, с. 37-51Изучается движение трех точечных вихрей в случае, если центр завихренности лежит на траектории одного из вихрей или находится достаточно близко от нее. Численно исследованы траектории вихрей в широком диапазоне изменения их интенсивностей. Вычислены асимптотики траекторий вихрей для конфигураций, близких к сингулярной или коллинеарной.
-
В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.
Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.
Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.