Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается линейная управляемая система с неполной обратной связью с дискретным временем
x(t+1)=A(t)x(t)+B(t)u(t), y(t)=C*(t)x(t), u(t)=U(t)y(t), t∈Z.
Исследуется задача управления асимптотическим поведением замкнутой системы
x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn. (1)
Здесь K=C или K=R. Для такой системы вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследовано свойство согласованности системы (1), получены новые необходимые условия и достаточные условия согласованности системы (1), в том числе в стационарном случае. Для стационарной системы вида (1) исследуется задача о глобальном управлении спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы (1) с помощью стационарного управления U к произвольному наперед заданному полиному. Для системы (1) с постоянными коэффициентами специального вида, когда матрица A имеет форму Хессенберга, а в матрицах B и C все строки соответственно до p-й и после p-й (не включая p) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. Ранее было доказано, что обратное утверждение верно для n<4 и неверно для n>5. В настоящей работе доказано, что обратное утверждение верно для n=4.
-
Рассматривается линейная управляемая система с линейной неполной обратной связью с дискретным временем $$x(t+1)=Ax(t)+Bu(t), \quad y(t)=C^*x(t), \quad u(t)=Uy(t),$$ $$t\in\mathbb{Z},\quad (x,u,y)\in\mathbb{K}^n\times\mathbb{K}^m\times\mathbb{K}^k.$$
Здесь $\mathbb K=\mathbb C$ или $\mathbb K=\mathbb R$. Для замкнутой системы $$x(t+1)=(A+BUC^*)x(t), \quad x\in\mathbb K^n, \qquad(1)$$
вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследуется свойство согласованности системы $(1)$ в связи с задачей управления спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы $(1)$ с помощью стационарного управления $U$ к произвольному наперед заданному полиному. Для системы $(1)$ специального вида, когда матрица $A$ имеет форму Хессенберга, а в матрицах $B$ и $C$ все строки соответственно до $p$-й и после $p$-й (не включая $p$) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. В предыдущих работах было доказано, что обратное утверждение верно для $n<5$ и неверно для $n>5$. В настоящей работе открытый вопрос для $n=5$ разрешен. Доказано, что при $n=5$ для системы с коэффициентами специального вида свойство согласованности является необходимым условием глобальной управляемости спектра собственных значений. Доказательство производится перебором всевозможных допустимых значений размерностей $m,k,p$. Свойство согласованности эквивалентно свойству полной управляемости «большой системы» размерности $n^2$. Для доказательства строится большая система, строится матрица управляемости $K$ этой системы размерности $n^2\times n^2mk$. Доказывается, что матрица $K$ имеет ненулевой минор порядка $n^2=25$. Для вычисления определителей больших порядков используется система Maple 15.
-
Доказано, что линейная управляемая система $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad\qquad (1) $$ с коэффициентами в форме Хессенберга при достаточно широких условиях на коэффициенты обладает свойством равномерной полной управляемости в смысле Калмана. Показана существенность для некоторых полученных достаточных условий. Установлены следствия для квазидифференциальных уравнений. Исследуется задача о глобальном управлении асимптотическими инвариантами системы $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \qquad \qquad \qquad \qquad (2) $$ полученной замыканием системы $(1)$ обратной связью $u=Ux$. В известных результатах С.Н. Поповой ослабляются условия на коэффициенты. Для системы $(2)$ с коэффициентами в форме Хессенберга, с помощью результатов С.Н. Поповой, получены достаточные условия глобальной скаляризуемости и глобальной управляемости показателей Ляпунова, а в случае когда $A(\cdot)$ и $B(\cdot)$ - $\omega$-периодические и достаточные условия глобальной ляпуновской приводимости.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.