Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'системы с неопределенностью':
Найдено статей: 4
  1. Изместьев И.В., Ухоботов В.И., Кудрявцев К.Н.
    Численное решение задачи управления параболической системой с помехами, с. 33-47

    Рассматривается управляемая параболическая система, которая описывает нагрев заданного количества стержней. Функции плотности внутренних источников тепла стержней точно неизвестны, а заданы только отрезки их изменения. На концах стержней находятся управляемые источники тепла и помехи. Цель выбора управления заключается в том, чтобы привести вектор средних температур стержней в фиксированный момент времени на заданный компакт при любых допустимых функциях плотности внутренних источников тепла и любых допустимых реализациях помех. После замены переменных получена задача управления системой обыкновенных дифференциальных уравнений при наличии неопределенности. Используя численный метод, для этой задачи построено множество разрешимости. Выполнены модельные расчеты.

  2. Работа посвящена развитию полиэдральных методов решения двух задач управления линейными многошаговыми системами с неопределенностями при фазовых ограничениях — задач терминального сближения и уклонения. Они возникают в системах с двумя управлениями, где цель одного — привести траекторию на заданное конечное множество в заданный момент времени, не нарушая фазовых ограничений, цель другого — противоположна. Предполагается, что конечное множество — параллелепипед, управления стеснены параллелотопозначными ограничениями, фазовые ограничения заданы в виде полос. Представлены методы решения обеих задач с использованием полиэдральных (параллелотопо- или параллелепипедо-значных) трубок. Методы решения задачи сближения предложены автором ранее, но здесь исследуются их дополнительные свойства. В частности, для случая без фазовых ограничений найдены гарантированные оценки для траектории, обеспечивающие ее нахождение внутри трубки. Даны удобные достаточные условия, гарантирующие получение невырожденных сечений в процессе вычислений. Для задачи уклонения сначала рассматривается общая схема решения, а затем предлагаются полиэдральные методы. Приводятся и сравниваются целые параметрические семейства внешних и внутренних полиэдральных оценок трубок разрешимости обеих задач. Приведен иллюстрирующий пример.

  3. Рассматривается задача управления параболической системой, которая описывает нагрев заданного количества стержней. Функции плотности внутренних источников тепла стержней точно неизвестны, а задан только отрезок их изменения. Управлением являются точечные источники тепла, которые находятся на концах стержней. Цель выбора управления заключается в том, чтобы в фиксированный момент времени модуль линейной функции, определяемой с помощью средних температур стержней, не превышал заданного значения при любых допустимых функциях плотности внутренних источников тепла. Разработана методика сведения этой задачи к одномерной задаче управления при наличии неопределенности. Найдены необходимые и достаточные условия окончания.

  4. Для игровой задачи удержания траекторий абстрактной динамической системы в заданном множестве исследуются соотношения метода программных итераций и конструкций, связанных с построением операторно выпуклой оболочки множества посредством предоболочки. В рамках данных соотношений процедура построения упомянутой оболочки реализуется в форме, двойственной по отношению к процедуре на основе метода программных итераций. Решение задачи удержания определяется в классе многозначных квазистратегий (неупреждающих откликов на реализации неопределенных факторов процесса). Показано, что множество успешной разрешимости задачи удержания определяется в виде предела итерационной процедуры на пространстве множеств, элементами которых являются позиции игры, а также установлена структура разрешающих квазистратегий.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref