Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В данной статье изучена задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде. На основании свойства полноты систем собственных функций двух одномерных спектральных задач доказана теорема единственности. Для доказательства существования решения задачи использован спектральный метод Фурье, основанный на разделении переменных. Решение поставленной задачи построено в виде суммы двойного ряда Фурье-Бесселя. При обосновании равномерной сходимости построенного ряда использованы асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, позволившие доказать сходимость ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.
-
Работа посвящена развитию полиэдральных методов решения двух задач управления линейными многошаговыми системами с неопределенностями при фазовых ограничениях — задач терминального сближения и уклонения. Они возникают в системах с двумя управлениями, где цель одного — привести траекторию на заданное конечное множество в заданный момент времени, не нарушая фазовых ограничений, цель другого — противоположна. Предполагается, что конечное множество — параллелепипед, управления стеснены параллелотопозначными ограничениями, фазовые ограничения заданы в виде полос. Представлены методы решения обеих задач с использованием полиэдральных (параллелотопо- или параллелепипедо-значных) трубок. Методы решения задачи сближения предложены автором ранее, но здесь исследуются их дополнительные свойства. В частности, для случая без фазовых ограничений найдены гарантированные оценки для траектории, обеспечивающие ее нахождение внутри трубки. Даны удобные достаточные условия, гарантирующие получение невырожденных сечений в процессе вычислений. Для задачи уклонения сначала рассматривается общая схема решения, а затем предлагаются полиэдральные методы. Приводятся и сравниваются целые параметрические семейства внешних и внутренних полиэдральных оценок трубок разрешимости обеих задач. Приведен иллюстрирующий пример.
-
Для дифференциально-разностной задачи управления процессом диффузии получен принцип максимума, позволяющий определить такие моменты включения и выключения максимальной мощности источника вещества, при которых внутри параллелепипеда устанавливается допустимый уровень его концентрации при наблюдаемом уровне концентрации этого вещества на границе параллелепипеда.
-
О численном моделировании трехмерной конвекции, с. 118-132Рассмотрена задача о трехмерной конвекции жидкости в прямоугольном параллелепипеде со свободными от касательных напряжений изотермическими горизонтальными границами, при подогреве снизу. Предложен специальный спектрально-разностный численный метод расчета, второго порядка аппроксимации по пространству и первого по времени. Проведенный линейный анализ предлагаемого численного метода показал, что численный метод правильно (с хорошим количественным соответствием в длинноволновой части спектра и с качественным - в коротковолновой) передает спектральные характеристики дифференциальной задачи при реальных значениях шагов по времени, пространству и надкритичности. В качестве тестов проведены расчеты двумерной валиковой и турбулентной конвекции Рэлея-Бенара для надкритичности, равной, соответственно, 2.2 и 950 при числе Прандтля, равном 10.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.