Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматриваются структурные, аппроксимативные и спектральные свойства нётеровых операторов индекса n и (−n), действующих между банаховыми пространствами B и D, где D изоморфно прямой сумме пространства B и конечномерного пространства E размерности n. Раскрыта роль теоремы С.М. Никольского о фредгольмовом операторе в изучении указанных свойств, а также в вопросе разрешимости уравнений с краевыми неравенствами. В случае сепарабельного гильбертова пространства B для однозначно разрешимых краевых задач предлагается основанная на разложении Э. Шмидта компактного оператора схема дискретизации, которая позволяет применить абстрактный вариант теоремы Рябенького–Филиппова о связи аппроксимации, устойчивости и сходимости.
-
Базисность системы собственных функций дифференциального оператора второго порядка с инволюцией, с. 183-196В настоящей работе мы изучаем спектральную задачу для дифференциального оператора второго порядка с инволюцией и с краевыми условиями типа Дирихле. Построена функция Грина изучаемой краевой задачи. Получены равномерные оценки функций Грина рассматриваемых краевых задач. Установлена равносходимость разложений произвольной функции из класса $L_{1}(-1,1)$ по собственным функциям двух дифференциальных операторов второго порядка с инволюцией с краевыми условиями типа Дирихле. Мы используем интегральный метод, основанный на функции Грина дифференциального оператора второго порядка с инволюцией и со спектральным параметром. Как следствие из доказанной теоремы о равносходимости разложений по собственным функциям, мы доказываем базисность в пространстве $L_{2}(-1,1)$ собственных функций спектральной задачи с непрерывным комплекснозначным коэффициентом $q(x).$
-
В настоящей работе исследуется двумерная краевая задача типа Стеклова для оператора Ламэ в полуполосе, которая является предельной для сингулярно возмущенной краевой задачи в полуполосе с малым отверстием. Доказана теорема о существовании собственных элементов исследуемой краевой задачи. В частности, получены оценки для собственных значений, выраженные через постоянные Ламэ и параметр, определяющий ширину полуполосы, а также уточнена структура соответствующих собственных вектор-функций, определяющая их поведение при удалении от основания полуполосы. Более того, найдены явные выражения собственных значений предельной краевой задачи с точностью до решения системы алгебраических уравнений. Результаты, полученные в данной работе, позволят построить и строго обосновать асимптотическое разложение собственного значения сингулярно возмущенной краевой задачи в полуполосе с малым отверстием с точностью до степени малого параметра, характеризующего размер отверстия.
-
В данной работе изучены непрерывные случайные процессы с нечеткими состояниями. Установлены свойства их числовых характеристик — нечетких ожиданий, ожиданий и ковариационных функций. Основное внимание уделено классу стационарных нечетко-случайных процессов. Для них обосновано свойство эргодичности и спектральное представление ковариационной функции (обобщенная теорема Винера–Хинчина). Полученные результаты опираются на свойства нечетко-случайных величин и числовых случайных процессов. В качестве примеров рассмотрены треугольные нечетко-случайные процессы.
-
Об одной задаче для уравнения смешанного типа четвертого порядка, вырождающегося внутри и на границе области, с. 312-328В данной статье для одного уравнения смешанного типа четвертого порядка, вырождающегося внутри и на границе области, в прямоугольной области сформулирована и исследована нелокальная начально-граничная задача. С помощью применения метода разделения переменных получена спектральная задача для обыкновенного дифференциального уравнения. Построена функция Грина последней задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром, откуда следует существование собственных значений и система собственных функций спектральной задачи. Доказана теорема разложения заданной функции в равномерно сходящийся ряд по системе собственных функций. С помощью найденного интегрального уравнения и теоремы Мерсера доказана равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.