Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Классическая система реакции-диффузии — система Шнакенберга — рассматривается в ограниченной области $m$-мерного пространства, на границе которой предполагаются выполненными краевые условия Неймана. Изучается диффузионная неустойчивость стационарного пространственно-однородного решения этой системы, называемая также неустойчивостью Тьюринга, возникающая при изменении коэффициента диффузии $d.$ Путем анализа линеаризованной системы в бездиффузионном и диффузионном приближениях получено аналитическое описание области необходимых и достаточных условий неустойчивости Тьюринга на плоскости параметров системы. Показано, что одна из границ области необходимых условий является огибающей семейства кривых, ограничивающих область достаточных условий. При этом точки пересечения двух соседних кривых лежат на прямой, угловой коэффициент которой зависит от собственных значений оператора Лапласа в рассматриваемой области и не зависит от коэффициента диффузии. Найдено аналитическое выражение критического коэффициента диффузии, при котором происходит потеря устойчивости положения равновесия системы. Указаны условия, в зависимости от которых множество волновых чисел, соответствующих нейтральным модам устойчивости, счетно, конечно или пусто. Показано, что полуось $d>1$ можно представить в виде счетного объединения полуинтервалов, каждому из которых соответствует минимальное волновое число, при котором происходит потеря устойчивости, причем точки разбиения полуоси выражаются через собственные значения оператора Лапласа в рассматриваемой области.
-
Сани Чаплыгина с движущейся точечной массой, с. 583-589Неголономные механические системы возникают во многих задачах, имеющих практическое значение. Известной моделью в неголономной механике являются сани Чаплыгина. Сани Чаплыгина представляют собой твердое тело, опирающееся на поверхность острым невесомым колесом. Острый край колеса препятствует скольжению в направлении, перпендикулярном его плоскости. В данной работе рассмотрены сани Чаплыгина с изменяющимся со временем распределением масс, которое возникает за счет движения точки в поперечном относительно плоскости лезвия направлении. Получены уравнения движения, среди которых отделяется замкнутая система уравнений с периодическими по времени коэффициентами, описывающая эволюцию поступательной и угловой скорости саней. Показано, что если проекция центра масс всей системы на ось вдоль лезвия равна нулю, тогда поступательная скорость саней возрастает. При этом траектория точки контакта, как правило, является неограниченной.
-
Проведено математическое моделирование сложного теплообмена в замкнутой области, заполненной диатермичной средой. Область решения представляет собой замкнутую полость с теплопроводными стенками конечной толщины, имеющими диффузно-серые внутренние поверхности. Краевая задача сформулирована в безразмерных переменных «функция тока–завихренность–температура» и решена методом конечных разностей. Установлены масштабы влияния числа Рэлея, степени черноты внутренних поверхностей и коэффициента теплопроводности материала ограждающих твердых стенок на режимы течения и теплопереноса.
-
Рассмотрена динамика вращения твердого тела (ротатора) вокруг неглавной оси Oz, проходящей через его центр масс, с учетом диссипативных моментов: сухого трения Mfr, возникающего в опорах из-за поперечных динамических реакций, и квадратичного по угловой скорости ω аэродинамического сопротивления MR=-c|ω|ω. Показано, что уравнение динамики и вытекающие из него кинетики вращения тела качественно различны в общем и частном случаях инерционных и диссипативных параметров: осевого момента инерции Jzz, коэффициентов c и α=Mfr/√ε2+ω4 (ε - угловое ускорение). В частном случае равенства Jzz=c=α обнаружено отсутствие физически возможного решения для вращения по инерции в рамках динамики абсолютно твердого тела. Парадокс разрешается через нормализующее причинно-следственные связи введение запаздывающих величин ε(t-τ) и ω(t-τ), определяющих в согласии с принципом Даламбера поперечные реакции в опорах оси Mx,y(t-τ) и пару Mfr(t-τ). Последняя же определяла темп потери кинетического момента dKz(t)/dt в момент времени t. Кинетика вращения при этом имеет импульсивный характер так называемого фрикционно-аэродинамического удара. Также путем численного интегрирования продемонстрирована необычная угловая кинетика φ(t) затухающих колебаний ротатора под действием упругого момента Me=-κφ, характеризующаяся наличием двух фаз: кратковременного стартового участка, зависящего от начальных условий, затем резко переходящего в фазу почти синусоидальных колебаний с медленно убывающей амплитудой.
-
Работа посвящена экспериментальному исследованию влияния трения качения на динамику робота-колеса. Робот приводится в движение за счет изменения собственного гиростатического момента с помощью управляемого вращения установленного на нем ротора. Задача рассматривается в предположении, что центр масс системы не совпадает с ее геометрическим центром. В работе получены уравнения, описывающие динамику рассматриваемой системы, и приведен пример управляемого движения колеса при задании постоянного углового ускорения ротора. Приведено описание конструкции робота-колеса и предложена методика экспериментального определения коэффициента трения качения. Для проверки предложенной математической модели проведены экспериментальные исследования управляемого движения робота-колеса. В работе показано, что теоретические и экспериментальные результаты качественно совпадают, но имеют количественное отличие.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.